Skip to main content
Log in

The Effect of Weight and CYP3A5 Genotype on the Population Pharmacokinetics of Tacrolimus in Stable Paediatric Renal Transplant Recipients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to develop a population pharmacokinetic model of tacrolimus in paediatric patients at least 1 year after renal transplantation and simulate individualised dosage regimens.

Patients and methods

We included 54 children with median age of 11.1 years (range 3.8–18.4 years) with 120 pharmacokinetic profiles performed over 2 to 4 h. The pharmacokinetic analysis was performed using the non-linear mixed-effects modelling software (NONMEM®). The impact of covariates including concomitant medications, age, the cytochrome P450 (CYP) CYP3A5*3 gene and the adenosine triphosphate binding cassette protein B1 (ABCB1) 3435 C→T gene polymorphism on tacrolimus pharmacokinetics was analysed. The final model was externally validated on an independent dataset and dosing regimens were simulated.

Results

A two-compartment model adequately described tacrolimus pharmacokinetics. Apparent oral clearance (CL/F) was associated with weight (allometric scaling) but not age. Children with lower weight and CYP3A5 expressers required higher weight-normalised tacrolimus doses. CL/F was inversely associated with haematocrit (P < 0.05) and γ-glutamyl transpeptidase (γGT) (P < 0.001) and was increased by 45 % in carriers of the CYP3A5*1 allele (P < 0.001). CL/F was not associated with concomitant medications. Dose simulations show that a daily tacrolimus dose of 0.2 mg/kg generates a pre-dose concentration (C 0) ranging from 5 to 10 µg/L depending on the weight and CYP3A5 polymorphism. The median area under the plasma concentration–time curve (AUC) corresponding with a tacrolimus C 0 of 4–8 µg/L was 97 h·µg/L (interquartile range 80–120).

Conclusions

In patients beyond the first year after transplantation, there is a cumulative effect of CYP3A5*1 polymorphism and weight on the tacrolimus C 0. Children with lower weight and carriers of the CYP3A5*1 allele have higher weight-normalised tacrolimus dose requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Claeys T, Van Dyck M, Van Damme-Lombaerts R. Pharmacokinetics of tacrolimus in stable paediatric renal transplant recipients. Pediatr Nephrol. 2010;25(2):335–42. doi:10.1007/s00467-009-1331-6.

    Article  PubMed  Google Scholar 

  2. Zhao W, Fakhoury M, Baudouin V, Maisin A, Deschenes G, Jacqz-Aigrain E. Limited sampling strategy for estimating individual exposure of tacrolimus in pediatric kidney transplant patients. Ther Drug Monit. 2011;33(6):681–7. doi:10.1097/FTD.0b013e318235d067.

    Article  CAS  PubMed  Google Scholar 

  3. Armendariz Y, Pou L, Cantarell C, Lopez R, Perello M, Capdevila L. Evaluation of a limited sampling strategy to estimate area under the curve of tacrolimus in adult renal transplant patients. Ther Drug Monit. 2005;27(4):431–4.

    Article  CAS  PubMed  Google Scholar 

  4. Scholten EM, Cremers SC, Schoemaker RC, Rowshani AT, van Kan EJ, den Hartigh J, et al. AUC-guided dosing of tacrolimus prevents progressive systemic overexposure in renal transplant recipients. Kidney Int. 2005;67(6):2440–7. doi:10.1111/j.1523-1755.2005.00352.x.

    Article  CAS  PubMed  Google Scholar 

  5. Uchida K, Tominaga Y, Haba T, Katayama T, Matsuoka S, Sato T, et al. Usefulness of monitoring of AUC(0–4 h) during the induction period of immunosuppressive therapy with tacrolimus after renal transplantation. Transplant Proc. 2002;34(5):1736–7.

    Article  CAS  PubMed  Google Scholar 

  6. Wallemacq P, Armstrong VW, Brunet M, Haufroid V, Holt DW, Johnston A, et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit. 2009;31(2):139–52. doi:10.1097/FTD.0b013e318198d092.

    Article  CAS  PubMed  Google Scholar 

  7. Naesens M, Salvatierra O, Li L, Kambham N, Concepcion W, Sarwal M. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. Transplantation. 2008;85(8):1139–45. doi:10.1097/TP.0b013e31816b431a.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;86(6):609–18. doi:10.1038/clpt.2009.210.

    Article  CAS  PubMed  Google Scholar 

  9. Hesselink DA, Ngyuen H, Wabbijn M, Gregoor PJ, Steyerberg EW, van Riemsdijk IC, et al. Tacrolimus dose requirement in renal transplant recipients is significantly higher when used in combination with corticosteroids. Br J Clin Pharmacol. 2003;56(3):327–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Gelder T. Drug interactions with tacrolimus. Drug Saf. 2002;25(10):707–12.

    Article  PubMed  Google Scholar 

  11. Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther. 2003;74(3):245–54. doi:10.1016/S0009-9236(03)00168-1.

    Article  CAS  PubMed  Google Scholar 

  12. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91. doi:10.1038/86882.

    Article  CAS  PubMed  Google Scholar 

  13. Anglicheau D, Verstuyft C, Laurent-Puig P, Becquemont L, Schlageter MH, Cassinat B, et al. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol. 2003;14(7):1889–96.

    Article  CAS  PubMed  Google Scholar 

  14. Kurzawski M, Dabrowska J, Dziewanowski K, Domanski L, Peruzynska M, Drozdzik M. CYP3A5 and CYP3A4, but not ABCB1 polymorphisms affect tacrolimus dose-adjusted trough concentrations in kidney transplant recipients. Pharmacogenomics. 2014;15(2):179–88. doi:10.2217/pgs.13.199.

    Article  CAS  PubMed  Google Scholar 

  15. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet. 2010;49(3):141–75. doi:10.2165/11317350-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  16. Benkali K, Premaud A, Picard N, Rerolle JP, Toupance O, Hoizey G, et al. Tacrolimus population pharmacokinetic-pharmacogenetic analysis and Bayesian estimation in renal transplant recipients. Clin Pharmacokinet. 2009;48(12):805–16. doi:10.2165/11318080-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  17. Antignac M, Barrou B, Farinotti R, Lechat P, Urien S. Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients. Br J Clin Pharmacol. 2007;64(6):750–7. doi:10.1111/j.1365-2125.2007.02895.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao CY, Jiao Z, Mao JJ, Qiu XY. External evaluation of published population pharmacokinetic models of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol. doi:10.1111/bcp.12830. Epub 2015 Nov 17.

  19. Christians U, Jacobsen W, Benet LZ, Lampen A. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet. 2002;41(11):813–51. doi:10.2165/00003088-200241110-00003.

    Article  CAS  PubMed  Google Scholar 

  20. Grenda R, Watson A, Trompeter R, Tonshoff B, Jaray J, Fitzpatrick M, Murer L, et al. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant. 2010;10(4):828–36. doi:10.1111/j.1600-6143.2010.03047.x.

    Article  CAS  PubMed  Google Scholar 

  21. van Rossum LK, Mathot RA, Cransberg K, Zietse R, Vulto AG. Estimation of the glomerular filtration rate in children: which algorithm should be used? Pediatr Nephrol. 2005;20(12):1769–75. doi:10.1007/s00467-005-2001-y.

    Article  PubMed  Google Scholar 

  22. van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem. 2002;48(10):1668–71.

    PubMed  Google Scholar 

  23. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  24. Jonsson EN, Karlsson MO. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51–64.

    Article  CAS  PubMed  Google Scholar 

  25. Keizer RJ, van Benten M, Beijnen JH, Schellens JH, Huitema AD. Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Programs Biomed. 2011;101(1):72–9. doi:10.1016/j.cmpb.2010.04.018.

    Article  PubMed  Google Scholar 

  26. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82(1):17–20. doi:10.1038/sj.clpt.6100241.

    Article  CAS  PubMed  Google Scholar 

  27. Savic RM, Karlsson MO. Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69. doi:10.1208/s12248-009-9133-0.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20(5):511–28.

    Article  CAS  PubMed  Google Scholar 

  29. Jonsson EN, Karlsson MO. Automated covariate model building within NONMEM. Pharm Res. 1998;15(9):1463–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ette EI. Stability and performance of a population pharmacokinetic model. J Clin Pharmacol. 1997;37(6):486–95.

    Article  CAS  PubMed  Google Scholar 

  31. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57. doi:10.1016/j.cmpb.2005.04.005.

    Article  PubMed  Google Scholar 

  32. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51. doi:10.1208/s12248-011-9255-z.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao W, Fakhoury M, Baudouin V, Storme T, Maisin A, Deschenes G, et al. Population pharmacokinetics and pharmacogenetics of once daily prolonged-release formulation of tacrolimus in pediatric and adolescent kidney transplant recipients. Eur J Clin Pharmacol. 2013;69(2):189–95. doi:10.1007/s00228-012-1330-6.

    Article  CAS  PubMed  Google Scholar 

  34. Musuamba FT, Guy-Viterbo V, Reding R, Verbeeck RK, Wallemacq P. Population pharmacokinetic analysis of tacrolimus early after pediatric liver transplantation. Ther Drug Monit. 2014;36(1):54–61. doi:10.1097/FTD.0b013e31829dcbcd.

    CAS  PubMed  Google Scholar 

  35. Guy-Viterbo V, Scohy A, Verbeeck RK, Reding R, Wallemacq P, Musuamba FT. Population pharmacokinetic analysis of tacrolimus in the first year after pediatric liver transplantation. Eur J Clin Pharmacol. 2013;69(8):1533–42. doi:10.1007/s00228-013-1501-0.

    Article  CAS  PubMed  Google Scholar 

  36. Wallin JE, Bergstrand M, Wilczek HE, Nydert PS, Karlsson MO, Staatz CE. Population pharmacokinetics of tacrolimus in pediatric liver transplantation: early posttransplantation clearance. Ther Drug Monit. 2011;33(6):663–72. doi:10.1097/FTD.0b013e31823415cc.

    Article  CAS  PubMed  Google Scholar 

  37. Fukudo M, Yano I, Masuda S, Goto M, Uesugi M, Katsura T, et al. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther. 2006;80(4):331–45. doi:10.1016/j.clpt.2006.06.008.

    Article  CAS  PubMed  Google Scholar 

  38. Bjorkman S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet. 2006;45(1):1–11. doi:10.2165/00003088-200645010-00001.

    Article  PubMed  Google Scholar 

  39. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–53.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao W, Fakhoury M, Jacqz-Aigrain E. Developmental pharmacogenetics of immunosuppressants in pediatric organ transplantation. Ther Drug Monit. 2010;32(6):688–99. doi:10.1097/FTD.0b013e3181f6502d.

    Article  CAS  PubMed  Google Scholar 

  41. de Wildt SN, van Schaik RH, Soldin OP, Soldin SJ, Brojeni PY, van der Heiden IP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol. 2011;67(12):1231–41. doi:10.1007/s00228-011-1083-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferraris JR, Argibay PF, Costa L, Jimenez G, Coccia PA, Ghezzi LF, et al. Influence of CYP3A5 polymorphism on tacrolimus maintenance doses and serum levels after renal transplantation: age dependency and pharmacological interaction with steroids. Pediatr Transplant. 2011;15(5):525–32. doi:10.1111/j.1399-3046.2011.01513.x.

    Article  CAS  PubMed  Google Scholar 

  43. Lalan S, Abdel-Rahman S, Gaedigk A, Leeder JS, Warady BA, Dai H, et al. Effect of CYP3A5 genotype, steroids, and azoles on tacrolimus in a pediatric renal transplant population. Pediatr Nephrol. 2014;29(10):2039–49. doi:10.1007/s00467-014-2827-2.

    Article  PubMed  Google Scholar 

  44. Kausman JY, Patel B, Marks SD. Standard dosing of tacrolimus leads to overexposure in pediatric renal transplantation recipients. Pediatr Transplant. 2008;12(3):329–35. doi:10.1111/j.1399-3046.2007.00821.x.

    Article  CAS  PubMed  Google Scholar 

  45. Gijsen V, Mital S, van Schaik RH, Soldin OP, Soldin SJ, van der Heiden IP, et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients. J Heart Lung Transplant. 2011;30(12):1352–9. doi:10.1016/j.healun.2011.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19–24. doi:10.1002/cpt.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. MacPhee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant. 2004;4(6):914–9. doi:10.1111/j.1600-6143.2004.00435.x.

    Article  CAS  PubMed  Google Scholar 

  48. Kuypers DR, de Loor H, Naesens M, Coopmans T, de Jonge H. Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet Genomics. 2014;24(12):597–606. doi:10.1097/FPC.0000000000000095.

    Article  CAS  PubMed  Google Scholar 

  49. Zahir H, McCaughan G, Gleeson M, Nand RA, McLachlan AJ. Factors affecting variability in distribution of tacrolimus in liver transplant recipients. Br J Clin Pharmacol. 2004;57(3):298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hebert MF, Zheng S, Hays K, Shen DD, Davis CL, Umans JG, et al. Interpreting tacrolimus concentrations during pregnancy and postpartum. Transplantation. 2013;95(7):908–15. doi:10.1097/TP.0b013e318278d367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Storset E, Holford N, Midtvedt K, Bremer S, Bergan S, Asberg A. Importance of hematocrit for a tacrolimus target concentration strategy. Eur J Clin Pharmacol. 2014;70(1):65–77. doi:10.1007/s00228-013-1584-7.

    Article  PubMed  Google Scholar 

  52. Abu-Elmagd K, Fung JJ, Alessiani M, Jain A, Venkataramanan R, Warty VS, et al. The effect of graft function on FK506 plasma levels, dosages, and renal function, with particular reference to the liver. Transplantation. 1991;52(1):71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fung JJ, Todo S, Tzakis A, Demetris A, Jain A, Abu-Elmaged K, Alessiani M, et al. Conversion of liver allograft recipients from cyclosporine to FK 506-based immunosuppression: benefits and pitfalls. Transplant Proc. 1991;23(1 Pt 1):14–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee DS, Evans JC, Robins SJ, Wilson PW, Albano I, Fox CS, et al. Gamma glutamyl transferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2007;27(1):127–33. doi:10.1161/01.ATV.0000251993.20372.40.

    Article  CAS  PubMed  Google Scholar 

  55. Kim JS, Aviles DH, Silverstein DM, Leblanc PL, Matti Vehaskari V. Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant. 2005;9(2):162–9. doi:10.1111/j.1399-3046.2005.00263.x.

    Article  CAS  PubMed  Google Scholar 

  56. van Duijnhoven EM, Boots JM, Christiaans MH, Stolk LM, Undre NA, van Hooff JP. Increase in tacrolimus trough levels after steroid withdrawal. Transplant Int. 2003;16(10):721–5. doi:10.1007/s00147-003-0615-1.

    Article  Google Scholar 

  57. Cheung C, Yu AM, Chen CS, Krausz KW, Byrd LG, Feigenbaum L, et al. Growth hormone determines sexual dimorphism of hepatic cytochrome P450 3A4 expression in transgenic mice. J Pharmacol Exp Ther. 2006;316(3):1328–34. doi:10.1124/jpet.105.094367.

    Article  CAS  PubMed  Google Scholar 

  58. Tyden G, Berg U, Reinholt F. Acute renal graft rejection after treatment with human growth hormone. Lancet. 1990;336(8728):1455–6.

    Article  CAS  PubMed  Google Scholar 

  59. Guest G, Berard E, Crosnier H, Chevallier T, Rappaport R, Broyer M. Effects of growth hormone in short children after renal transplantation. French Society of Pediatric Nephrology. Pediatr Nephrol. 1998;12(6):437–46.

    Article  CAS  PubMed  Google Scholar 

  60. Hodson EM, Willis NS, Craig JC. Growth hormone for children with chronic kidney disease. Cochrane Database Syst Rev. 2012;2:CD003264. doi:10.1002/14651858.CD003264.pub3.

    PubMed  Google Scholar 

  61. Filler G, Feber J, Lepage N, Weiler G, Mai I. Universal approach to pharmacokinetic monitoring of immunosuppressive agents in children. Pediatr Transplant. 2002;6(5):411–8.

    Article  CAS  PubMed  Google Scholar 

  62. van Boekel GA, Donders AR, Hoogtanders KE, Havenith TR, Hilbrands LB, Aarnoutse RE. Limited sampling strategy for prolonged-release tacrolimus in renal transplant patients by use of the dried blood spot technique. Eur J Clin Pharmacol. 2015;71(7):811–6. doi:10.1007/s00228-015-1863-6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Montini G, Ujka F, Varagnolo C, Ghio L, Ginevri F, Murer L, et al. The pharmacokinetics and immunosuppressive response of tacrolimus in paediatric renal transplant recipients. Pediatr Nephrol. 2006;21(5):719–24. doi:10.1007/s00467-006-0014-9.

    Article  PubMed  Google Scholar 

  64. Barraclough KA, Isbel NM, Kirkpatrick CM, Lee KJ, Taylor PJ, Johnson DW, et al. Evaluation of limited sampling methods for estimation of tacrolimus exposure in adult kidney transplant recipients. Br J Clin Pharmacol. 2011;71(2):207–23. doi:10.1111/j.1365-2125.2010.03815.x.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  66. Lapeyraque AL, Kassir N, Theoret Y, Krajinovic M, Clermont MJ, Litalien C, et al. Conversion from twice- to once-daily tacrolimus in pediatric kidney recipients: a pharmacokinetic and bioequivalence study. Pediatr Nephrol. 2014;29(6):1081–8. doi:10.1007/s00467-013-2724-0.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Staatz CE, Tett SE. Clinical pharmacokinetics of once-daily tacrolimus in solid-organ transplant patients. Clin Pharmacokinet. 2015;54(10):993–1025. doi:10.1007/s40262-015-0282-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka A. Prytuła.

Ethics declarations

Agnieszka Prytuła has been supported by a Clinical Research Grant funded by the University of Ghent. Saskia de Wildt has been supported by a ZonMW Clinical Fellowship. Agnieszka Prytuła, Karlien Cransberg, Antonia Bouts, Ron van Schaik, Huib de Jong, Saskia de Wildt and Ron Mathôt have no conflicts of interest related to this work to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prytuła, A.A., Cransberg, K., Bouts, A.H.M. et al. The Effect of Weight and CYP3A5 Genotype on the Population Pharmacokinetics of Tacrolimus in Stable Paediatric Renal Transplant Recipients. Clin Pharmacokinet 55, 1129–1143 (2016). https://doi.org/10.1007/s40262-016-0390-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0390-7

Keywords

Navigation