Skip to main content
Log in

To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Microdosing studies allow clinical investigation of pharmacokinetics earlier in drug development, before all high-dose safety concerns have been sorted out. Furthermore, microdosing allows inclusion of target groups that are inadmissible in high-dose phase I trials. A potential concern when considering a microdosing study is that a particular drug candidate may display non-linear pharmacokinetics. Saturation of, for example, membrane transport or metabolism at exposure levels between the microdose and therapeutic dose may limit the predictivity of high-dose pharmacokinetics from microdose observations. Guidance on the likelihood of appreciable non-linear pharmacokinetics based on preclinical information can be helpful in staging the clinical phase and the place of microdosing in it. We present a decision tree that evaluates concerns about non-linearities raised in the preclinical phase and their potential impact on the proportionality between microdose and intended therapeutic dose as predicted from preclinical information. The expected maximum concentrations at relevant sites are estimated by non-compartmental methods. These are compared with dissolution, Michaelis constants for active or enzymatic processes, and binding protein concentrations to assess the potential saturation of the processes below therapeutic doses. The decision tree was applied to ten published cases comparing microdose and therapeutic dose pharmacokinetics, for which concerns about non-linear pharmacokinetics were raised a priori. The decision tree was able to discriminate cases showing substantial non-linearities from cases displaying dose-proportional pharmacokinetics. The recommendations described in this paper may be useful in deciding whether a microdosing study is a sensible option to gain early insight in clinical pharmacokinetics of drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dueker SR, Vuong LT, Lohstroh PN, Giacomo JA, Vogel JS. Quantifying exploratory low dose compounds in humans with AMS. Adv Drug Deliv Rev. 2011;63(7):518–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston B, et al. Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability. Eur J Pharm Sci. 2010;40(2):125–31.

    Article  PubMed  CAS  Google Scholar 

  3. Denton CL, Minthorn E, Carson SW, Young GC, Richards-Peterson LE, Botbyl J, et al. Concomitant oral and intravenous pharmacokinetics of dabrafenib, a BRAF inhibitor, in patients with BRAF V600 mutation-positive solid tumors. J Clin Pharmacol. 2013;53(9):955–61.

    Article  PubMed  CAS  Google Scholar 

  4. Croft M, Keely B, Morris I, Tann L, Lappin G. Predicting drug candidate victims of drug-drug interactions, using microdosing. Clin Pharmacokinet. 2012;51(4):237–46.

    Article  PubMed  CAS  Google Scholar 

  5. Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for industry, investigators, and reviewers - exploratory IND studies. Rockville: FDA; 2006.

  6. Brown K, Dingley KH, Turteltaub KW. Accelerator mass spectrometry for biomedical research. Methods Enzymol. 2005;402:423–43.

    Article  PubMed  CAS  Google Scholar 

  7. Jacobson-Kram D, Mills G. Leveraging exploratory investigational new drug studies to accelerate drug development. Clin Cancer Res. 2008;14(12):3670–4.

    Article  PubMed  Google Scholar 

  8. Lappin G, Seymour M, Gross G, Jørgensen M, Kall M, Kværnø L. Meeting the MIST regulations: human metabolism in phase I using AMS and a tiered bioanalytical approach. Bioanalysis. 2012;4(4):407–16.

    Article  PubMed  CAS  Google Scholar 

  9. Morris CA, Dueker SR, Lohstroh PN, Wang LQ, Fang XP, Jung D, et al. Mass balance and metabolism of the antimalarial pyronaridine in healthy volunteers. Eur J Drug Metab Pharmacokinet. 2014. doi:10.1007/s13318-014-0182-0.

    PubMed  Google Scholar 

  10. Mooij MG, van Duijn E, Knibbe CA, Windhorst AD, Hendrikse NH, Vaes WH, et al. Pediatric microdose study of [14C]paracetamol to study drug metabolism using accelerated mass spectrometry: proof of concept. Clin Pharmacokinet. 2014;53(11):1045–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gordi T, Baillie R, le Vuong T, Abidi S, Dueker S, Vasquez H, et al. Pharmacokinetic analysis of 14C-ursodiol in newborn infants using accelerator mass spectrometry. J Clin Pharmacol. 2014;54(9):1031–7.

    Article  PubMed  CAS  Google Scholar 

  12. Lappin G, Noveck R, Burt T. Microdosing and drug development: past, present and future. Expert Opin Drug Metab Toxicol. 2013;9(7):817–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lappin G. Microdosing: current and the future. Bioanalysis. 2010;2(3):509–17.

    Article  PubMed  CAS  Google Scholar 

  14. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  PubMed  CAS  Google Scholar 

  15. Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for industry, drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. Silver Spring: FDA; 2012.

  16. European Medicine Agency (EMA), Committee for Human Medicinal Products (CHMP). Guideline on the investigation of drug interactions. London: EMA; 2012.

  17. Ludden TM. Nonlinear pharmacokinetics: clinical Implications. Clin Pharmacokinet. 1991;20(6):429–46.

    Article  PubMed  CAS  Google Scholar 

  18. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  PubMed  CAS  Google Scholar 

  19. Huang W, Lee SL, Yu LX. Mechanistic approaches to predicting oral drug absorption. AAPS J. 2009;11(2):217–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lennernäs H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr Drug Metab. 2007;8(7):645–57.

    Article  PubMed  Google Scholar 

  21. Tu M, Mathiowetz AM, Pfefferkorn JA, Cameron KO, Dow RL, Litchfield J, et al. Medicinal chemistry design principles for liver targeting through OATP transporters. Curr Top Med Chem. 2013;13(7):857–66.

    Article  PubMed  CAS  Google Scholar 

  22. Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics—concepts and applications. 4th ed. Baltimore: Williams & Wilkins; 2011.

    Google Scholar 

  23. Weiner IM, Blanchard KC, Mudge GH. Factors influencing renal excretion of foreign organic acids. Am J Physiol. 1964;207:953–63.

    PubMed  CAS  Google Scholar 

  24. Rostami-Hodjegan A, Tucker G. ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions. Drug Discov Today Technol. 2004;1(4):441–8.

    Article  PubMed  CAS  Google Scholar 

  25. Bosgra S, van Eijkeren J, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit Rev Toxicol. 2012;42(9):751–67.

    Article  PubMed  Google Scholar 

  26. Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, et al. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS Pharm Sci. 2002;4(4):E25.

    Article  Google Scholar 

  27. Westerhout J, van de Steeg E, Grossouw D, Zeijdner EE, Krul CA, Verwei M, et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci. 2014;63:167–77.

    Article  PubMed  CAS  Google Scholar 

  28. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.

    PubMed  CAS  Google Scholar 

  29. Chiba M, Ishii Y, Sugiyama Y. Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J. 2009;11(2):262–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci. 1979;68:1203–5.

    Article  PubMed  CAS  Google Scholar 

  31. Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J Med Chem. 2002;45:2867–76.

    Article  PubMed  CAS  Google Scholar 

  32. Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem. 2004;47:1242–50.

    Article  PubMed  CAS  Google Scholar 

  33. Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston JB, et al. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur J Pharm Sci. 2011;43(3):141–50.

    Article  PubMed  CAS  Google Scholar 

  34. Lappin G, Kuhnz W, Jochemsen R, Kneer J, Chaudhary A, Oosterhuis B, et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs. Clin Pharmacol Ther. 2006;80(3):203–15.

    Article  PubMed  CAS  Google Scholar 

  35. Ieiri I, Nishimura C, Maeda K, Sasaki T, Kimura M, Chiyoda T, et al. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose. Pharmacogenet Genomics. 2011;21(8):495–505.

    Article  PubMed  CAS  Google Scholar 

  36. Maeda K, Takano J, Ikeda Y, Fujita T, Oyama Y, Nozawa K, et al. Nonlinear pharmacokinetics of oral quinidine and verapamil in healthy subjects: a clinical microdosing study. Clin Pharmacol Ther. 2011;90(2):263–70.

    Article  PubMed  CAS  Google Scholar 

  37. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.

    Article  PubMed  CAS  Google Scholar 

  38. Togami K, Chono S, Morimoto K. Transport characteristics of clarithromycin, azithromycin and telithromycin, antibiotics applied for treatment of respiratory infections, in Calu-3 cell monolayers as model lung epithelial cells. Pharmazie. 2012;67(5):389–93.

    PubMed  CAS  Google Scholar 

  39. Andersson T, Miners JO, Veronese ME, Birkett DJ. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang RW, Newton DJ, Scheri TD, Lu AY. Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab Dispos. 1997;25(4):502–7.

    PubMed  CAS  Google Scholar 

  41. Nozinic D, Milic A, Mikac L, Ralic J, Padovan J, Antolovic R. Assessment of macrolide transport using PAMPA, Caco-2 and MDCKII-hMDR1 assays. Croat Chem Acta. 2010;83:323–31.

    CAS  Google Scholar 

  42. Kobayashi Y, Sakai R, Ohshiro N, Ohbayashi M, Kohyama N, Yamamoto T. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos. 2005;33(5):619–22.

    Article  PubMed  CAS  Google Scholar 

  43. Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21(8):1398–404.

    Article  PubMed  CAS  Google Scholar 

  44. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.

    PubMed  CAS  Google Scholar 

  45. Liu Y, Ramírez J, Ratain MJ. Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors. Br J Clin Pharmacol. 2011;71(6):917–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Riches Z, Bloomer J, Patel A, Nolan A, Coughtrie M. Assessment of cryopreserved human hepatocytes as a model system to investigate sulfation and glucuronidation and to evaluate inhibitors of drug conjugation. Xenobiotica. 2009;39(5):374–81.

    Article  PubMed  CAS  Google Scholar 

  47. Hemeryck A, De Vriendt C, Belpaire FM. Effect of selective serotonin reuptake inhibitors on the oxidative metabolism of propafenone: in vitro studies using human liver microsomes. J Clin Psychopharmacol. 2000;20(4):428–34.

    Article  PubMed  CAS  Google Scholar 

  48. Ekins S, Bravi G, Wikel JH, Wrighton SA. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999;291(1):424–33.

    PubMed  CAS  Google Scholar 

  49. Shirasaka Y, Masaoka Y, Kataoka M, Sakuma S, Yamashita S. Scaling of in vitro membrane permeability to predict P-glycoprotein-mediated drug absorption in vivo. Drug Metab Dispos. 2008;36(5):916–22.

    Article  PubMed  CAS  Google Scholar 

  50. Ebner T, Schänzle G, Weber W, Sent U, Elliott J. In vitro glucuronidation of the angiotensin II receptor antagonist telmisartan in the cat: a comparison with other species. J Vet Pharmacol Ther. 2013;36(2):154–60.

    Article  PubMed  CAS  Google Scholar 

  51. Ishiguro N, Maeda K, Kishimoto W, Saito A, Harada A, Ebner T, et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab Dispos. 2006;34(7):1109–15.

    Article  PubMed  CAS  Google Scholar 

  52. Yazdanian M, Glynn SL, Wright JL, Hawi A. Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res. 1998;15(9):1490–4.

    Article  PubMed  CAS  Google Scholar 

  53. Tolle-Sander S, Rautio J, Wring S, Polli JW, Polli JE. Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm Res. 2003;20(5):757–64.

    Article  PubMed  CAS  Google Scholar 

  54. Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10(3):195–204.

    Article  PubMed  CAS  Google Scholar 

  55. Castillo-Garit JA, Marrero-Ponce Y, Torrens F, García-Domenech R. Estimation of ADME properties in drug discovery: predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. J Pharm Sci. 2008;97(5):1946–76.

    Article  PubMed  CAS  Google Scholar 

  56. Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D. Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos. 1997;25(5):623–30.

    PubMed  CAS  Google Scholar 

  57. Swift B, Tian X, Brouwer KLR. Integration of preclinical and clinical data with pharmacokinetic modeling and simulation to evaluate fexofenadine as a probe for hepatobiliary transport function. Pharm Res. 2009;26(8):1942–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Naritomi Y, Terashita S, Kagayama A, Sugiyama Y. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos. 2003;31(5):580–8.

    Article  PubMed  CAS  Google Scholar 

  59. Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8(1):33–45.

    Article  PubMed  CAS  Google Scholar 

  60. Niwa T, Murayama N, Emoto C, Yamazaki H. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr Drug Metab. 2008;9(1):20–33.

    Article  PubMed  CAS  Google Scholar 

  61. Snyder R, Sangar R, Wang J, Ekins S. Three-dimensional quantitative structure activity relationship for CYP2D6 substrates. QSAR. 2002;21:357–68.

    CAS  Google Scholar 

  62. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.

    Article  PubMed  CAS  Google Scholar 

  63. Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol. 2006;69(6):2084–92.

    Article  PubMed  CAS  Google Scholar 

  64. Riches Z, Stanley EL, Bloomer JC, Coughtrie MW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos. 2009;37(11):2255–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cole GB, Keum G, Liu J, Small GW, Satyamurthy N, Kepe V, et al. Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc Natl Acad Sci. 2010;107(14):6222–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hashiguchi T, Kurogi K, Sakakibara Y, Yamasaki M, Nishiyama K, Yasuda S, et al. Enzymatic sulfation of tocopherols and tocopherol metabolites by human cytosolic sulfotransferases. Biosci Biotechnol Biochem. 2011;75(10):1951–6.

    Article  PubMed  CAS  Google Scholar 

  67. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Levy G, Mager DE, Cheung WK, Jusko WJ. Comparative pharmacokinetics of coumarin anticoagulants L: physiologic modeling of S-warfarin in rats and pharmacologic target-mediated warfarin disposition in man. J Pharm Sci. 2003;92(5):985–94.

    Article  PubMed  CAS  Google Scholar 

  69. Gill KL, Houston JB, Galetin A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012;40(4):825–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cubitt HE, Houston JB, Galetin A. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data. Drug Metab Dispos. 2011;39(5):864–73.

    Article  PubMed  CAS  Google Scholar 

  71. Zou P, Zheng N, Yang Y, Yu LX, Sun D. Prediction of volume of distribution at steady state in humans: comparison of different approaches. Expert Opin Drug Metab Toxicol. 2012;8(7):855–72.

    Article  PubMed  CAS  Google Scholar 

  72. Sugiyama Y, Yamashita S. Impact of microdosing clinical study—why necessary and how useful? Adv Drug Deliv Rev. 2011;63(7):494–502.

    Article  PubMed  CAS  Google Scholar 

  73. Vlaming M, van Duijn E, Dillingh MR, Brands R, Windhorst AD, Hendrikse NH, et al. Microdosing of a carbon-14 labeled protein in healthy volunteers accurately predicts its pharmacokinetics at therapeutic dosages. Clin Pharmacol Ther. 2015;. doi:10.1002/cpt.131 (Epub 2015 Apr 13).

    PubMed  Google Scholar 

  74. Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, et al. Confidence interval criteria for assessment of dose proportionality. Pharm Res. 2000;17:1278–83.

    Article  PubMed  CAS  Google Scholar 

  75. Hummel J, McKendrick S, Brindley C, French R. Exploratory assessment of dose proportionality: review of current approaches and proposal for a practical criterion. Pharm Stat. 2009;8(1):38–49.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues Dr. Joost Westerhout for helping to collect the in vitro input data to the prediction tool from public literature and Dr. Esther van Duijn for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sieto Bosgra.

Ethics declarations

Conflict of interest

The authors did not receive any funding for writing this manuscript. S.B. and W.H.J.V. work, and M.L.H.V. formerly worked, for TNO, a not-for-profit research organization that uses accelerator mass spectrometry in both research and fee-for-service projects.

Appendix

Appendix

Box 1 Decision tree for guidance on dose proportionality between microdose and therapeutic dose pharmacokinetics. The decision tree evaluates any of six potential causes for concern that may have been identified in the preclinical phase. The required input is given between brackets. Concentrations and related constants are in molar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosgra, S., Vlaming, M.L.H. & Vaes, W.H.J. To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics. Clin Pharmacokinet 55, 1–15 (2016). https://doi.org/10.1007/s40262-015-0308-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0308-9

Keywords

Navigation