Skip to main content
Log in

The T-peak–T-end Interval as a Marker of Repolarization Abnormality: A Comparison with the QT Interval for Five Different Drugs

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

The T-peak to T-end (TpTe) interval has been suggested as an index of transmural dispersion and as a marker of drug-induced abnormal repolarization. In this study, we investigate the relation between TpTe and the QT interval.

Methods

Electrocardiograms (ECGs) from five different drugs (sotalol, sertindole, moxifloxacin, nalmefene, and Lu 38-135) and from a placebo group were analyzed. Semi-automatic measurements of T-peak, T-end, and QRS onset were obtained. The TpTe/QT ratio was calculated to investigate the proportional relationship of QT and TpTe.

Results

Although a significant increase of both TpTe and QT from baseline is apparent with QT-prolonging drugs, the TpTe/QT ratio remained the same at baseline and after drug administration, thus indicating that prolongation of TpTe is just a fractional part of total QT prolongation. In the presence of notched or flattened T-waves, the uncertainty associated with measurement of the TpTe interval increases. The errors in TpTe for individual subjects may be substantial, thus complicating the use of TpTe for follow-up of individuals.

Conclusions

The duration of the QT interval and TpTe are closely related. Drugs appear to prolong the TpTe interval as a predictable fraction of the total QT prolongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E14 Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs. Center for Drug Evaluation and Research Food and Drug Administration. 2005.

  2. Andersen MP, Xue JQ, Graff C, Kanters JK, Toft E, Struijk JJ. New descriptors of T-wave morphology are independent of heart rate. J Electrocardiol. 2008;41(6):557–61.

    Article  PubMed  Google Scholar 

  3. Graff C, Matz J, Christensen EB, Andersen MP, Kanters JK, Toft E, et al. Quantitative analysis of T-wave morphology increases confidence in drug-induced cardiac repolarization abnormalities: evidence from the investigational IKr inhibitor Lu 35-138. J Clin Pharmacol. 2009;49(11):1331–42.

    Article  CAS  PubMed  Google Scholar 

  4. Vicente J, Johannesen L, Mason JW, Crumb WJ, Pueyo E, Stockbridge N, et al. Comprehensive T wave morphology assessment in a randomized clinical study of dofetilide, quinidine, ranolazine, and verapamil. J Am Heart Assoc. 2015;4(4):1–13.

  5. Struijk JJ, Kanters JK, Andersen MP, Hardahl T, Graff C, Christiansen M, et al. Classification of the long-QT syndrome based on discriminant analysis of T-wave morphology. Med Biol Eng Comput. 2006;44(7):543–9.

    Article  CAS  PubMed  Google Scholar 

  6. Pham Q, Quan KJ, Rosenbaum DS. T-wave alternans: marker, mechanism, and methodology for predicting sudden cardiac death. J Electrocardiol. 2003;36:75–81.

    Article  PubMed  Google Scholar 

  7. Couderc JP, Xia X, Peterson DR, McNitt S, Zhao H, Polonsky S, et al. T-wave morphology abnormalities in benign, potent, and arrhythmogenic I(kr) inhibition. Heart Rhythm. 2011;8(7):1036–43.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lubinski A, Lewicka-Nowak E, Kempa M, Baczynska AM, Romanowska I, Swiatecka G. New insight into repolarization abnormalities in patients with congenital long QT syndrome: the increased transmural dispersion of repolarization. Pacing Clin Electrophysiol PACE. 1998;21(1 Pt 2):172–5.

    Article  CAS  PubMed  Google Scholar 

  9. Yamaguchi M, Shimizu M, Ino H, Terai H, Uchiyama K, Oe K, et al. T wave peak-to-end interval and QT dispersion in acquired long QT syndrome: a new index for arrhythmogenicity. Clin Sci (Lond). 2003;105(6):671–6.

    Article  PubMed  Google Scholar 

  10. Panikkath R, Reinier K, Uy-Evanado A, Teodorescu C, Hattenhauer J, Mariani R, et al. Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circ Arrhythm Electrophysiol. 2011;4(4):441–7.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Haarmark C, Hansen PR, Vedel-Larsen E, Pedersen SH, Graff C, Andersen MP, et al. The prognostic value of the Tpeak-Tend interval in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J Electrocardiol. 2009;42(6):555–60.

    Article  PubMed  Google Scholar 

  12. Castro Hevia J, Antzelevitch C, Tornes Barzaga F, Dorantes Sanchez M, Dorticos Balea F, Zayas Molina R, et al. Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. J Am Coll Cardiol. 2006;47(9):1828–34.

  13. Haarmark C, Kyvik KO, Vedel-Larsen E, Budtz-Jorgensen E, Kanters JK. Heritability of Tpeak-Tend interval and T-wave amplitude: a twin study. Circ Cardiovasc Genet. 2011;4(5):516–22.

    Article  PubMed  Google Scholar 

  14. Kanters JK, Haarmark C, Vedel-Larsen E, Andersen MP, Graff C, Struijk JJ, et al. T(peak)T(end) interval in long QT syndrome. J Electrocardiol. 2008;41(6):603–8.

    Article  PubMed  Google Scholar 

  15. Sicouri S, Moro S, Litovsky S, Elizari MV, Antzelevitch C. Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol. 1997;8(11):1269–79.

    Article  CAS  PubMed  Google Scholar 

  16. Yan G, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation. 1998;98(18):1928.

    Article  CAS  PubMed  Google Scholar 

  17. Kuo CS, Munakata K, Reddy CP, Surawicz B. Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation. 1983;67(6):1356–67.

    Article  CAS  PubMed  Google Scholar 

  18. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ Res. 1991;68(6):1729–41.

    Article  CAS  PubMed  Google Scholar 

  19. Noble D, Cohen I. The interpretation of the T wave of the electrocardiogram. Cardiovasc Res. 1978;12(1):13–27.

    Article  CAS  PubMed  Google Scholar 

  20. Autenrieth G, Surawicz B, Kuo CS, Arita M. Primary T wave abnormalities caused by uniform and regional shortening of ventricular monophasic action potential in dog. Circulation. 1975;51(4):668–76.

    Article  CAS  PubMed  Google Scholar 

  21. Di Diego JM, Sun ZQ, Antzelevitch C. I(to) and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol. 1996;271(2 Pt 2):H548–61.

  22. Opthof T, Coronel R, Wilms-Schopman FJ, Plotnikov AN, Shlapakova IN, Danilo P Jr, et al. Dispersion of repolarization in canine ventricle and the electrocardiographic T wave: Tp-e interval does not reflect transmural dispersion. Heart Rhythm. 2007;4(3):341–8.

    Article  PubMed  Google Scholar 

  23. Graff C, Andersen MP, Xue JQ, Hardahl TB, Kanters JK, Toft E, et al. Identifying drug-induced repolarization abnormalities from distinct ECG patterns in congenital long QT syndrome: a study of sotalol effects on T-wave morphology. Drug Saf. 2009;32(7):599–611.

    Article  CAS  PubMed  Google Scholar 

  24. Nielsen J, Graff C, Hardahl T, Andersen MP, Kristoffersen J, Struijk JJ, et al. Sertindole causes distinct electrocardiographic T-wave morphology changes. Eur Neuropsychopharmacol. 2009;19(10):702–7.

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen J, Andersen MP, Graff C, Kanters JK, Hardahl T, Dybbro J, et al. The effect of sertindole on QTD and TPTE. Acta Psychiatr Scand. 2010;121(5):385–8.

    Article  CAS  PubMed  Google Scholar 

  26. Graff C, Struijk JJ, Matz J, Kanters JK, Andersen MP, Nielsen J, et al. Covariate analysis of QTc and T-wave morphology: new possibilities in the evaluation of drugs that affect cardiac repolarization. Clin Pharmacol Ther. 2010;88(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  27. Matz J, Graff C, Vainio PJ, Kallio A, Højer AM, Struijk JJ, et al. Effect of nalmefene 20 and 80 mg on the corrected QT interval and T-wave morphology. Clin Drug Investig. 2012;31(11):799–811.

    Article  Google Scholar 

  28. Antzelevitch C. Drug-induced spatial dispersion of repolarization. Cardiol J. 2008;15(2):100–21.

    PubMed Central  PubMed  Google Scholar 

  29. Lepeschkin E, Surawicz B. The measurement of the Q-T interval of the electrocardiogram. Circulation. 1952;6(3):378–88.

    Article  CAS  PubMed  Google Scholar 

  30. Manriquez AI, Zhang Q. An algorithm for QRS onset and offset detection in single lead electrocardiogram records. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:541–4.

    PubMed  Google Scholar 

  31. Xue J, Gao W, Chen Y, Han X. Identify drug-induced T wave morphology changes by a cell-to-electrocardiogram model and validation with clinical trial data. J Electrocardiol. 2009;42(6):534–42.

    Article  PubMed  Google Scholar 

  32. Johannesen L, Vicente J, Mason JW, Sanabria C, Waite-Labott K, Hong M, et al. Differentiating drug-induced multichannel block on the electrocardiogram: randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clin Pharmacol Ther. 2014;96(5):549–58.

    Article  CAS  PubMed  Google Scholar 

  33. Akar FG, Yan GX, Antzelevitch C, Rosenbaum DS. Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation. 2002;105(10):1247–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanveer A. Bhuiyan.

Ethics declarations

Funding

This work was supported by the Danish Council for Strategic Research (HEARTSAFE Grant Number: 10-092799).

Conflict of interest

Jimmi Nielsen has received research grants from H. Lundbeck A/S and Pfizer and speaking fees from H. Lundbeck, Hemocue, and Bristol Myers Squibb. All other authors (Tanveer A Bhuiyan, Claus Graff, Jørgen K Kanters, Jørgen Matz, Jacob Melgaard, Egon Toft and Johannes Struijk) declare no conflict of interest.

Ethical approval

All six drug studies were in accordance with the Helsinki declaration. Ethical approvals were sought before each study.

Informed consent

Subjects from the studies sotalol, lu 35-138, moxifloxacin, nalmefene and Placebo provided written informed consent. However, informed consent was not required for the sertindole study as decided by the North Jutland Committee on Biomedical Research ethics, since the ECGs were indicated for therapeutic monitoring as recommended for patients treated with sertindole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, T.A., Graff, C., Kanters, J.K. et al. The T-peak–T-end Interval as a Marker of Repolarization Abnormality: A Comparison with the QT Interval for Five Different Drugs. Clin Drug Investig 35, 717–724 (2015). https://doi.org/10.1007/s40261-015-0328-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-015-0328-0

Keywords

Navigation