Skip to main content
Log in

Long-Term Inhaled Granulocyte Macrophage–Colony-Stimulating Factor in Autoimmune Pulmonary Alveolar Proteinosis: Effectiveness, Safety, and Lowest Effective Dose

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objectives

Granulocyte macrophage–colony-stimulating factor (GM-CSF) causes variable improvement in autoimmune pulmonary alveolar proteinosis (aPAP). Upon response to short-term treatment, patients are divided into responders and non-responders. The aim of this study was to test the hypothesis that long-term inhaled GM-CSF (iGM-CSF) is effective in all patients and that attainment of remission permits gradual de-escalation of the dose to the lowest effective safe dose.

Methods

Patients were treated with iGM-CSF 250 μg once a day given 4 days on and 4 days off for as long as necessary (the “as far as it takes” protocol). Upon remission, defined as absence of symptoms, oxygen desaturation <4 % at the walking test, and significant radiographic reduction of the infiltrates, or at least two of the above, the iGM-CSF dose was de-escalated. In the case of relapse, the patient was repositioned at the previous effective dose. Patients were investigated at 6-month intervals. To detect hematopoietic effects, blood cell counts, CD34+ cells, granulocyte macrophage progenitor colony-forming-units, and burst-forming-unit erythroid were measured.

Results

Six (five female) patients 43.8 ± 15.7 years of age were treated for 14–65 months and all responded to treatment. Remission was achieved after 25.6 ± 10 months. Three patients maintained remission at their lowest effective dose. Two patients relapsed at de-escalating doses. One patient remains on full-dose treatment. iGM-CSF had no impact on any of the hematological parameters tested.

Conclusions

In aPAP, long-term adherence to the dose schedule permitted remission in all patients. Long-term treatment with iGM-CSF also permitted the definition of lower effective doses, minimizing disease burden and treatment costs safely, since no stimulating activity on hematopoiesis was observed, a fact that is of paramount importance for those aPAP patients needing lifelong treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosen SH, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med. 1958;258:1123–42.

    Article  CAS  PubMed  Google Scholar 

  2. Seymour JF, Presneill JJ. Pulmonary alveolar proteinosis. Progress in the first 44 years. Am J Respir Crit Care Med. 2002;166:215–35.

    Article  PubMed  Google Scholar 

  3. Trapnell B, Whitsett J, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349:2527–39.

    Article  CAS  PubMed  Google Scholar 

  4. Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, et al. Involvement of granulocyte-macrophage colony stimulating factor in pulmonary homeostasis. Science. 1994;264:713–6.

    Article  CAS  PubMed  Google Scholar 

  5. Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JAM, et al. Granulocyte/macrophage colony stimulating factor deficient mice show no major perturbation of hemopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A. 1994;91:5592–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dirksen U, Nishinakamura R, Groneck P, Hattenhorst U, Nogee L, Murray R, et al. Human pulmonary alveolar proteinosis associated with a defect in GM-CSF/IL-3/IL-5 receptor common beta chain expression. J Clin Invest. 1997;100:2211–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Suzuki T, Sakagami T, Young LR, Carrey BC, Wood RE, Luisetti M, et al. Hereditary pulmonary alveolar proteinosis. Pathogenesis, presentation, diagnosis and therapy. Am J Respir Crit Care Med. 2010;82:1292–304.

    Article  Google Scholar 

  8. Yoshida M, Ikegami M, Reed JA, Chroneos ZC, Whitsett JA. GMCSF regulates protein and lipid catabolism by alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2001;280:L379–86.

    CAS  PubMed  Google Scholar 

  9. Kitamura T, Tanaka N, Watanabe J, Uchida K, Kanegasaki S, Yamada Y, et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte macrophage colony stimulating factor. J Exp Med. 1999;190:875–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sakagami T, Uchida K, Suzuki T, Carey BC, Wood RE, Wert SE, et al. Human GM-CSF autoantibodies and reproduction of pulmonary alveolar proteinosis. N Engl J Med. 2009;361:2679–81.

    Article  CAS  PubMed  Google Scholar 

  11. Trapnell BC, Carey BC, Uchida K, Suzuki T. Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GMCSF stimulation of macrophages. Curr Opin Immunol. 2009;21:514–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Uchida K, Nakata K, Trapnell BC, Terakawa T, Hamano E, Mikami A, et al. High affinity autoantibodies specifically eliminate granulocyte-macrophage colony stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood. 2004;103:1089–98.

    Article  CAS  PubMed  Google Scholar 

  13. Tazawa R, Hamano E, Arai T, Ohta H, Ishimoto O, Uchida K, et al. Granulocyte-macrophage colony-stimulating factor and lung immunity in pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2005;171:1142–9.

    Article  PubMed  Google Scholar 

  14. Seymour JF, Dunn AR, Vincent JM, Presneill JJ, Pain MC. Efficacy of granulocyte-macrophage colony-stimulating factor in acquired alveolar proteinosis. N Engl J Med. 1996;335:1924–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kavuru MS, Sullivan EJ, Piccin R, Thomassen MJ, Stoller JK. Exogenous granulocyte-macrophage stimulating factor in acquired alveolar proteinosis. Am J Respir Crit Care Med. 2000;161:1143–8.

    Article  CAS  PubMed  Google Scholar 

  16. Seymour JF, Presneill JJ, Schoch OD, Downie GH, Moore PE, Doyle IR, et al. Therapeutic efficacy of granulocyte-macrophage colony stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med. 2001;163:524–31.

    Article  CAS  PubMed  Google Scholar 

  17. Venkateshiah SB, Yan SB, Bonfield TL, Thomassen MJ, Meziane M, Czich C, et al. An open label trial of granulocyte-macrophage stimulating factor therapy for moderate symptomatic pulmonary alveolar proteinosis. Chest. 2006;130:227–37.

    Article  CAS  PubMed  Google Scholar 

  18. Wylam ME, Ten RM, Katzmann JA, Clawson M, Prakash UBS, Anderson PM. Aerosolized GM-CSF improves pulmonary function in idiopathic pulmonary alveolar proteinosis [abstract]. Am J Respir Crit Care Med. 2000;161:A889.

    Google Scholar 

  19. Wylam ME, Ten R, Prakash UBS, Nadrous HF, Clawson ML, Anderson PM. Aerosol granulocyte-macrophage colony-stimulating factor for pulmonary alveolar proteinosis. Eur Respir J. 2006;27:585–93.

    Article  CAS  PubMed  Google Scholar 

  20. Tazawa R, Trapnell BC, Inoue Y, Arai T, Takada T, Nasuhara Y, et al. Inhaled granulocyte/macrophage colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2010;181:1345–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Khan A, Agarwal R, Aggarwal AN. Effectiveness of granulocyte-macrophage colony stimulating factor therapy in autoimmune pulmonary alveolar proteinosis: a meta-analysis of observational studies. Chest. 2012;141:1273–83.

    Article  CAS  PubMed  Google Scholar 

  22. Hsia CC, Linenberger M, Howson-Jan K, Mangel J, Chin-Yee IH, Collins S, et al. Acute myeloid leukemia in a healthy hematopoietic stem cell donor following past exposure to a short course G-CSF. Bone Marrow Transpl. 2008;42:431–2.

    Article  CAS  Google Scholar 

  23. Avalos BR, Lazaryan A, Copelan EA. Can G-CSF cause leukemia in hematopoietic stem cell donors? Biol Blood Marrow Transpl. 2011;17:1739–46.

    Article  CAS  Google Scholar 

  24. Beccaria M, Luisetti M, Rodi G, Corsico A, Zoia MC, Colato S, et al. Long-term durable benefit after whole lung lavage in pulmonary alveolar proteinosis. Eur Respir J. 2004;23:526–31.

    Article  CAS  PubMed  Google Scholar 

  25. Latzin P, Tredano M, Wüst Y, de Blic J, Nicolai T, Bewig B, et al. Anti-GM-CSF antibodies in paediatric pulmonary alveolar proteinosis. Epidemiologic and clinical information. Thorax. 2005;60:39–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Anderson PM, Markovic SN, Sloan JA, Clawson ML, Wylam M, Arndt CAS, et al. Colony stimulating factor: a low toxicity, lung specific biological therapy in patients with lung metastases. Clin Cancer Res. 1999;5:2316–23.

    CAS  PubMed  Google Scholar 

  27. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–68.

    Article  CAS  PubMed  Google Scholar 

  28. ATS statement: guidelines for the six minute walk test. Am J Respir Crit Care Med. 2002;166:111–7.

  29. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.

    CAS  PubMed  Google Scholar 

  30. Gratama JW, Orfao A, Barnett D, Brando B, Huber A, Janossy G, et al., for the European Working Group on Clinical Cell Analysis. Flow cytometric enumeration of CD34 + hematopoietic stem and progenitor cells. Cytometry. 1998;34:128–42.

  31. Pessina A, Albella B, Bayo M, Bueren J, Brantom P, Casati S, et al. Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci. 2003;75:355–67.

    Article  CAS  PubMed  Google Scholar 

  32. Tazawa R, Inoue Y, Arai T, Takada T, Kasahara Y, Hojo M, et al. Duration of benefit in patients with autoimmune pulmonary alveolar proteinosis after inhaled GM-CSF therapy. Chest. 2014;145(4):729–37.

  33. Yamamoto H, Yamaguchi E, Agata H, Kandatsu N, Komatsu T, Kawai S, et al. A combination therapy of whole lung lavage and GM-CSF inhalation in pulmonary alveolar proteinosis. Pediatr Pulmonol. 2008;43:828–30.

    Article  PubMed  Google Scholar 

  34. Hoffman RM, Dauber JH, Rogers RM. Improvement in alveolar macrophage migration after therapeutic whole lung lavage in pulmonary alveolar proteinosis. Am Rev Respir Dis. 1989;139:1030–2.

    Article  CAS  PubMed  Google Scholar 

  35. Bury T, Corhay JL, Saint-Remy P, Radermecker M. Protéinose alvéolaire: restauration fonctionelle macrophages alvéolaires après lavage thérapeutique. Rev Mal Respir. 1989;6:373–5.

    CAS  PubMed  Google Scholar 

  36. Ohashi K, Sato A, Takada T, Arai T, Nei T, Kasahara Y, et al. Direct evidence that GM-CSF inhalation improves lung clearance in pulmonary alveolar proteinosis. Res Med. 2012;106:284–93.

    Article  Google Scholar 

  37. Khwaja A, Carver J, Jones HM, Paterson D, Linch DC. Expression and dynamic modulation of the human granulocyte colony-stimulating factor receptor in immature and differentiated myeloid cells. Br J Hematol. 1993;85:254–9.

    Article  CAS  Google Scholar 

  38. Hershman D, Neugut AI, Jacobson JS, Wang J, Tsai WY, McBride R, et al. Acute myeloid leukemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. J Natl Cancer Inst. 2007;99:196–205.

    Article  CAS  PubMed  Google Scholar 

  39. Donadieu J, Boutard P, Bernatowska E, Tchernia G, Couillaud G, Philippe N, et al. A European phase II study of recombinant human granulocyte colony-stimulating factor (lenograstim) in the treatment of severe chronic neutropenia in children. Lenograstim Study Group. Eur J Pediatr. 1997;156:693–700.

    Article  CAS  PubMed  Google Scholar 

  40. Kaplinsky C, Trakhtenbrot L, Hardan I, Reichart M, Daniely M, Toren A, et al. Tetraploid myeloid cells in donors of peripheral blood stem cells treated with rhG-CSF. Bone Marrow Transpl. 2003;32:31–4.

    Article  CAS  Google Scholar 

  41. Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD. Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet. 1988;1:1194–8.

    Article  CAS  PubMed  Google Scholar 

  42. Howard P, Copland J. Off-label, not off-limits: the FDA needs to create a safe harbor for off-label drug use. Mo Med. 2013;110:106–9.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study is dedicated to the National Health System (ΕΣΥ) and to the people of Greece who, despite a quite catastrophic economic crisis, still support patients with severe and rare diseases to live. We thank Mrs. Andrea Schams for her help with determination of the GM-CSF autoantibodies. This work was supported in part by the German Federal Ministry of Education and Research (EuPAPNet project inside ERARE, Number 01GM1011A). We sincerely thank Mr. A. Analitis for statistical assistance.

Conflict of interest statement

Matthias Griese was supported in part by the German Ministry of Education and Research (EuPAPNet project inside ERARE, Number 01GM1011A). Spyros A. Papiris, Panagiotis Tsirigotis, Likurgos Kolilekas, Georgia Papadaki, Andriana I. Papaioannou, Christina Triantafillidou, Anastasia Papaporfyriou, Anna Karakatsani, Konstantinos Kagouridis, and Effrosyni D. Manali have no conflict of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Effrosyni D. Manali.

Additional information

L. Kolilekas, G. Papadaki and A.I. Papaioannou contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papiris, S.A., Tsirigotis, P., Kolilekas, L. et al. Long-Term Inhaled Granulocyte Macrophage–Colony-Stimulating Factor in Autoimmune Pulmonary Alveolar Proteinosis: Effectiveness, Safety, and Lowest Effective Dose. Clin Drug Investig 34, 553–564 (2014). https://doi.org/10.1007/s40261-014-0208-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-014-0208-z

Keywords

Navigation