Skip to main content
Log in

Emerging Targeted Therapies for Neuromyelitis Optica Spectrum Disorders

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune, inflammatory disorder of the central nervous system that typically presents with recurrent episodes of optic neuritis, longitudinally extensive myelitis, brainstem, diencephalic, and cerebral syndromes. Up to 80% of NMOSD patients have a circulating pathogenic autoantibody that targets the water channel aquaporin-4 (AQP4-IgG). The discovery of AQP4-IgG transformed our understanding of the pathogenesis of the disease and its possible treatment targets. Monoclonal antibodies targeting terminal complement (eculizumab), CD19 (inebilizumab), and the interleukin-6 receptor (satralizumab) have demonstrated efficacy in NMOSD attack prevention in recent phase 3 trials and have gained subsequent regulatory approval in the USA and other countries. We aim to review the evidence supporting the efficacy of these new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805–15. https://doi.org/10.1016/s1474-4422(07)70216-8.

    Article  CAS  PubMed  Google Scholar 

  2. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–89. https://doi.org/10.1212/wnl.0000000000001729.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kleiter I, Gahlen A, Borisow N, Fischer K, Wernecke KD, Wegner B, et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol. 2016;79(2):206–16. https://doi.org/10.1002/ana.24554.

    Article  CAS  PubMed  Google Scholar 

  4. Marrie RA, Gryba C. The incidence and prevalence of neuromyelitis optica: a systematic review. Int J MS Care. 2013;15(3):113–8. https://doi.org/10.7224/1537-2073.2012-048.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Flanagan EP, Cabre P, Weinshenker BG, Sauver JS, Jacobson DJ, Majed M, et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann Neurol. 2016;79(5):775–83. https://doi.org/10.1002/ana.24617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim SH, Kim HJ. Central nervous system neuroinflammatory disorders in Asian/Pacific regions. Curr Opin Neurol. 2016;29(3):372–80. https://doi.org/10.1097/wco.0000000000000315.

    Article  CAS  PubMed  Google Scholar 

  7. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):2106–12. https://doi.org/10.1016/s0140-6736(04)17551-x.

    Article  CAS  PubMed  Google Scholar 

  8. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202(4):473–7. https://doi.org/10.1084/jem.20050304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitley J, Woodhall M, Waters P, Leite MI, Devenney E, Craig J, et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology. 2012;79(12):1273–7. https://doi.org/10.1212/WNL.0b013e31826aac4e.

    Article  CAS  PubMed  Google Scholar 

  10. Narayan R, Simpson A, Fritsche K, Salama S, Pardo S, Mealy M, et al. MOG antibody disease: a review of MOG antibody seropositive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2018;25:66–72. https://doi.org/10.1016/j.msard.2018.07.025.

    Article  PubMed  Google Scholar 

  11. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain. 2002;125(Pt 7):1450–61. https://doi.org/10.1093/brain/awf151.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H, et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A. 2012;109(4):1245–50. https://doi.org/10.1073/pnas.1109980108.

    Article  PubMed  Google Scholar 

  13. Kinoshita M, Nakatsuji Y, Moriya M, Okuno T, Kumanogoh A, Nakano M, et al. Astrocytic necrosis is induced by anti-aquaporin-4 antibody-positive serum. NeuroReport. 2009;20(5):508–12. https://doi.org/10.1097/wnr.0b013e32832776f4.

    Article  CAS  PubMed  Google Scholar 

  14. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al. Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem Biophys Res Commun. 2010;394(1):205–10. https://doi.org/10.1016/j.bbrc.2010.02.157.

    Article  CAS  PubMed  Google Scholar 

  15. Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol. 2009;66(5):617–29. https://doi.org/10.1002/ana.21802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain. 2010;133(Pt 2):349–61. https://doi.org/10.1093/brain/awp309.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology. 2007;69(24):2221–31. https://doi.org/10.1212/01.WNL.0000289761.64862.ce.

    Article  CAS  PubMed  Google Scholar 

  18. Chihara N, Aranami T, Sato W, Miyazaki Y, Miyake S, Okamoto T, et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci USA. 2011;108(9):3701–6. https://doi.org/10.1073/pnas.1017385108.

    Article  PubMed  Google Scholar 

  19. Bennett JL, O’Connor KC, Bar-Or A, Zamvil SS, Hemmer B, Tedder TF, et al. B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e104. https://doi.org/10.1212/nxi.0000000000000104.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Matsushita T, Tateishi T, Isobe N, Yonekawa T, Yamasaki R, Matsuse D, et al. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS ONE. 2013;8(4):e61835. https://doi.org/10.1371/journal.pone.0061835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler. 2010;16(12):1443–52. https://doi.org/10.1177/1352458510379247.

    Article  CAS  PubMed  Google Scholar 

  22. Lin J, Li X, Xia J. Th17 cells in neuromyelitis optica spectrum disorder: a review. Int J Neurosci. 2016;126(12):1051–60. https://doi.org/10.3109/00207454.2016.1163550.

    Article  CAS  PubMed  Google Scholar 

  23. Nicolas P, Ruiz A, Cobo-Calvo A, Fiard G, Giraudon P, Vukusic S, et al. The balance in T follicular helper cell subsets is altered in neuromyelitis optica spectrum disorder patients and restored by rituximab. Front Immunol. 2019;10:2686. https://doi.org/10.3389/fimmu.2019.02686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takeshita Y, Obermeier B, Cotleur AC, Spampinato SF, Shimizu F, Yamamoto E, et al. Effects of neuromyelitis optica-IgG at the blood-brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm. 2017;4(1):e311. https://doi.org/10.1212/nxi.0000000000000311.

    Article  PubMed  Google Scholar 

  25. Jarius S, Paul F, Franciotta D, Ruprecht K, Ringelstein M, Bergamaschi R, et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci. 2011;306(1–2):82–90. https://doi.org/10.1016/j.jns.2011.03.038.

    Article  CAS  PubMed  Google Scholar 

  26. Weinshenker BG, Wingerchuk DM. Neuromyelitis spectrum disorders. Mayo Clin Proc. 2017;92(4):663–79. https://doi.org/10.1016/j.mayocp.2016.12.014.

    Article  PubMed  Google Scholar 

  27. Abboud H, Petrak A, Mealy M, Sasidharan S, Siddique L, Levy M. Treatment of acute relapses in neuromyelitis optica: steroids alone versus steroids plus plasma exchange. Mult Scler. 2016;22(2):185–92. https://doi.org/10.1177/1352458515581438.

    Article  CAS  PubMed  Google Scholar 

  28. Bonnan M, Valentino R, Debeugny S, Merle H, Fergé JL, Mehdaoui H, et al. Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry. 2018;89(4):346–51. https://doi.org/10.1136/jnnp-2017-316286.

    Article  PubMed  Google Scholar 

  29. Jarius S, Frederikson J, Waters P, Paul F, Akman-Demir G, Marignier R, et al. Frequency and prognostic impact of antibodies to aquaporin-4 in patients with optic neuritis. J Neurol Sci. 2010;298(1–2):158–62. https://doi.org/10.1016/j.jns.2010.07.011.

    Article  CAS  PubMed  Google Scholar 

  30. Weinshenker BG, Wingerchuk DM, Vukusic S, Linbo L, Pittock SJ, Lucchinetti CF, et al. Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann Neurol. 2006;59(3):566–9. https://doi.org/10.1002/ana.20770.

    Article  CAS  PubMed  Google Scholar 

  31. Wingerchuk DM, Weinshenker BG. Neuromyelitis optica. Curr Treat Options Neurol. 2008;10(1):55–66. https://doi.org/10.1007/s11940-008-0007-z.

    Article  PubMed  Google Scholar 

  32. Sellner J, Boggild M, Clanet M, Hintzen RQ, Illes Z, Montalban X, et al. EFNS guidelines on diagnosis and management of neuromyelitis optica. Eur J Neurol. 2010;17(8):1019–32. https://doi.org/10.1111/j.1468-1331.2010.03066.x.

    Article  CAS  PubMed  Google Scholar 

  33. Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol. 2014;261(1):1–16. https://doi.org/10.1007/s00415-013-7169-7.

    Article  CAS  PubMed  Google Scholar 

  34. Pellkofer HL, Krumbholz M, Berthele A, Hemmer B, Gerdes LA, Havla J, et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology. 2011;76(15):1310–5. https://doi.org/10.1212/WNL.0b013e3182152881.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SH, Kim W, Li XF, Jung IJ, Kim HJ. Repeated treatment with rituximab based on the assessment of peripheral circulating memory B cells in patients with relapsing neuromyelitis optica over 2 years. Arch Neurol. 2011;68(11):1412–20. https://doi.org/10.1001/archneurol.2011.154.

    Article  PubMed  Google Scholar 

  36. Bedi GS, Brown AD, Delgado SR, Usmani N, Lam BL, Sheremata WA. Impact of rituximab on relapse rate and disability in neuromyelitis optica. Mult Scler. 2011;17(10):1225–30. https://doi.org/10.1177/1352458511404586.

    Article  CAS  PubMed  Google Scholar 

  37. Damato V, Evoli A, Iorio R. Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol. 2016;73(11):1342–8. https://doi.org/10.1001/jamaneurol.2016.1637.

    Article  PubMed  Google Scholar 

  38. Gao F, Chai B, Gu C, Wu R, Dong T, Yao Y, et al. Effectiveness of rituximab in neuromyelitis optica: a meta-analysis. BMC Neurol. 2019;19(1):36. https://doi.org/10.1186/s12883-019-1261-2.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jacob A, Weinshenker BG, Violich I, McLinskey N, Krupp L, Fox RJ, et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol. 2008;65(11):1443–8. https://doi.org/10.1001/archneur.65.11.noc80069.

    Article  PubMed  Google Scholar 

  40. Cree BA, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005;64(7):1270–2. https://doi.org/10.1212/01.Wnl.0000159399.81861.D5.

    Article  CAS  PubMed  Google Scholar 

  41. Nikoo Z, Badihian S, Shaygannejad V, Asgari N, Ashtari F. Comparison of the efficacy of azathioprine and rituximab in neuromyelitis optica spectrum disorder: a randomized clinical trial. J Neurol. 2017;264(9):2003–9. https://doi.org/10.1007/s00415-017-8590-0.

    Article  CAS  PubMed  Google Scholar 

  42. Tahara M, Oeda T, Okada K, Kiriyama T, Ochi K, Maruyama H, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020;19(4):298–306. https://doi.org/10.1016/s1474-4422(20)30066-1.

    Article  CAS  PubMed  Google Scholar 

  43. Nilsson PH, Thomas AM, Bergseth G, Gustavsen A, Volokhina EB, van den Heuvel LP, et al. Eculizumab-C5 complexes express a C5a neoepitope in vivo: consequences for interpretation of patient complement analyses. Mol Immunol. 2017;89:111–4. https://doi.org/10.1016/j.molimm.2017.05.021.

    Article  CAS  PubMed  Google Scholar 

  44. Schatz-Jakobsen JA, Pedersen DV, Andersen GR. Structural insight into proteolytic activation and regulation of the complement system. Immunol Rev. 2016;274(1):59–73. https://doi.org/10.1111/imr.12465.

    Article  CAS  PubMed  Google Scholar 

  45. Sicre de Fontbrune F, Peffault de Latour R. Ten years of clinical experience with eculizumab in patients with paroxysmal nocturnal hemoglobinuria. Semin Hematol. 2018;55(3):124-9. https://doi.org/10.1053/j.seminhematol.2018.04.001.

  46. Asif A, Nayer A, Haas CS. Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J Nephrol. 2017;30(3):347–62. https://doi.org/10.1007/s40620-016-0357-7.

    Article  CAS  PubMed  Google Scholar 

  47. Muppidi S, Utsugisawa K, Benatar M, Murai H, Barohn RJ, Illa I, et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve. 2019;60(1):14–24. https://doi.org/10.1002/mus.26447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Phuan PW, Zhang H, Asavapanumas N, Leviten M, Rosenthal A, Tradtrantip L, et al. C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica. Acta Neuropathol. 2013;125(6):829–40. https://doi.org/10.1007/s00401-013-1128-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pittock SJ, Lennon VA, McKeon A, Mandrekar J, Weinshenker BG, Lucchinetti CF, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 2013;12(6):554–62. https://doi.org/10.1016/s1474-4422(13)70076-0.

    Article  CAS  PubMed  Google Scholar 

  50. Pittock SJ, Berthele A, Fujihara K, Kim HJ, Levy M, Palace J, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(7):614–25. https://doi.org/10.1056/NEJMoa1900866.

    Article  CAS  PubMed  Google Scholar 

  51. Kim HJ. Impact of eculizumab on hospitalization rates and relapse treatment in patients with neuromyelitis optica spectrum disorder: phase 3 PREVENT study. Int J MS Care. 2020.

  52. Wingerchuk D. Long-term safety and efficacy of eculizumab in neuromyelitis optica spectrum disorder. Int J MS Care. 2020.

  53. Palanichamy A, Jahn S, Nickles D, Derstine M, Abounasr A, Hauser SL, et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J Immunol. 2014;193(2):580–6. https://doi.org/10.4049/jimmunol.1400118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stüve O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord. 2018;11:1756286418761697. https://doi.org/10.1177/1756286418761697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394(10206):1352–63. https://doi.org/10.1016/s0140-6736(19)31817-3.

    Article  CAS  PubMed  Google Scholar 

  56. Araki M, Matsuoka T, Miyamoto K, Kusunoki S, Okamoto T, Murata M, et al. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology. 2014;82(15):1302–6. https://doi.org/10.1212/wnl.0000000000000317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ayzenberg I, Kleiter I, Schröder A, Hellwig K, Chan A, Yamamura T, et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol. 2013;70(3):394–7. https://doi.org/10.1001/jamaneurol.2013.1246.

    Article  PubMed  Google Scholar 

  58. Carreón Guarnizo E, Hernández Clares R, Castillo Triviño T, Meca Lallana V, Arocas Casañ V, Iniesta Martínez F, et al. Experience with tocilizumab in patients with neuromyelitis optica spectrum disorders. Neurologia. 2019. https://doi.org/10.1016/j.nrl.2018.12.013.

    Article  PubMed  Google Scholar 

  59. Lotan I, Charlson RW, Ryerson LZ, Levy M, Kister I. Effectiveness of subcutaneous tocilizumab in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2019;39:101920. https://doi.org/10.1016/j.msard.2019.101920.

    Article  PubMed  Google Scholar 

  60. Ringelstein M, Ayzenberg I, Harmel J, Lauenstein AS, Lensch E, Stögbauer F, et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 2015;72(7):756–63. https://doi.org/10.1001/jamaneurol.2015.0533.

    Article  PubMed  Google Scholar 

  61. Zhang C, Zhang M, Qiu W, Ma H, Zhang X, Zhu Z, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 2020;19(5):391–401. https://doi.org/10.1016/s1474-4422(20)30070-3.

    Article  CAS  PubMed  Google Scholar 

  62. Schett G. Physiological effects of modulating the interleukin-6 axis. Rheumatology (Oxford). 2018;57(suppl_2):ii43-ii50. https://doi.org/10.1093/rheumatology/kex513.

  63. Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, et al. Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol. 2010;28(11):1203–7. https://doi.org/10.1038/nbt.1691.

    Article  CAS  PubMed  Google Scholar 

  64. Yamamura T, Kleiter I, Fujihara K, Palace J, Greenberg B, Zakrzewska-Pniewska B, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(22):2114–24. https://doi.org/10.1056/NEJMoa1901747.

    Article  CAS  PubMed  Google Scholar 

  65. Traboulsee A, Greenberg BM, Bennett JL, Szczechowski L, Fox E, Shkrobot S, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020;19(5):402–12. https://doi.org/10.1016/s1474-4422(20)30078-8.

    Article  CAS  PubMed  Google Scholar 

  66. Vallejo R, Tilley DM, Vogel L, Benyamin R. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract. 2010;10(3):167–84. https://doi.org/10.1111/j.1533-2500.2010.00367.x.

    Article  PubMed  Google Scholar 

  67. Genentech. Enspryng® (satralizumab) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761149s000lbl.pdf. Accessed Nov 8, 2020.

  68. Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation. 2012;9:14. https://doi.org/10.1186/1742-2094-9-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kıyat-Atamer A, Ekizoğlu E, Tüzün E, Kürtüncü M, Shugaiv E, Akman-Demir G, et al. Long-term MRI findings in neuromyelitis optica: seropositive versus seronegative patients. Eur J Neurol. 2013;20(5):781–7. https://doi.org/10.1111/ene.12058.

    Article  PubMed  Google Scholar 

  70. Chen JJ, Flanagan EP, Bhatti MT, Jitprapaikulsan J, Dubey D, Lopez Chiriboga ASS, et al. Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology. 2020. https://doi.org/10.1212/wnl.0000000000009758.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52. https://doi.org/10.1212/wnl.33.11.1444.

    Article  CAS  PubMed  Google Scholar 

  72. Xue T, Yang Y, Lu Q, Gao B, Chen Z, Wang Z. Efficacy and safety of monoclonal antibody therapy in neuromyelitis optica spectrum disorders: evidence from randomized controlled trials. Mult Scler Relat Disord. 2020;43:102166. https://doi.org/10.1016/j.msard.2020.102166.

    Article  PubMed  Google Scholar 

  73. Mealy MA, Wingerchuk DM, Palace J, Greenberg BM, Levy M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 2014;71(3):324–30. https://doi.org/10.1001/jamaneurol.2013.5699.

    Article  PubMed  Google Scholar 

  74. Cohen M, Romero G, Bas J, Ticchioni M, Rosenthal M, Lacroix R, et al. Monitoring CD27+ memory B-cells in neuromyelitis optica spectrum disorders patients treated with rituximab: results from a bicentric study. J Neurol Sci. 2017;373:335–8. https://doi.org/10.1016/j.jns.2017.01.025.

    Article  CAS  PubMed  Google Scholar 

  75. Kim SH, Huh SY, Lee SJ, Joung A, Kim HJ. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 2013;70(9):1110–7. https://doi.org/10.1001/jamaneurol.2013.3071.

    Article  PubMed  Google Scholar 

  76. Kessler RA, Mealy MA, Jimenez-Arango JA, Quan C, Paul F, López R, et al. Anti-aquaporin-4 titer is not predictive of disease course in neuromyelitis optica spectrum disorder: a multicenter cohort study. Mult Scler Relat Disord. 2017;17:198–201. https://doi.org/10.1016/j.msard.2017.08.005.

    Article  PubMed  Google Scholar 

  77. Akaishi T, Takahashi T, Nakashima I, Abe M, Ishii T, Aoki M, et al. Repeated follow-up of AQP4-IgG titer by cell-based assay in neuromyelitis optica spectrum disorders (NMOSD). J Neurol Sci. 2020;410:116671. https://doi.org/10.1016/j.jns.2020.116671.

    Article  CAS  PubMed  Google Scholar 

  78. Jitprapaikulsan J, Fryer JP, Majed M, Smith CY, Jenkins SM, Cabre P et al. Clinical utility of AQP4-IgG titers and measures of complement-mediated cell killing in NMOSD. Neurol-Neuroimmunol. 2020;7(4). ARTN e72710.1212/NXI.0000000000000727.

  79. Ventura RE, Kister I, Chung S, Babb JS, Shepherd TM. Cervical spinal cord atrophy in NMOSD without a history of myelitis or MRI-visible lesions. Neurol Neuroimmunol Neuroinflamm. 2016;3(3):e224. https://doi.org/10.1212/nxi.0000000000000224.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Motamedi S, Oertel FC, Yadav SK, Kadas EM, Weise M, Havla J, et al. Altered fovea in AQP4-IgG-seropositive neuromyelitis optica spectrum disorders. Neurol Neuroimmunol Neuroinflamm. 2020. https://doi.org/10.1212/nxi.0000000000000805.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kim H, Lee EJ, Kim S, Choi LK, Kim K, Kim HW, et al. Serum biomarkers in myelin oligodendrocyte glycoprotein antibody-associated disease. Neurol Neuroimmunol Neuroinflamm. 2020. https://doi.org/10.1212/nxi.0000000000000708.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hartung H, Aktas O, Smith MA, et al. Serum glial fibrillary acidic protein is elevated in a subset of neuromyelitis optica patients and associated with increased risk of attacks. Int J MS Care. 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean M. Wingerchuk.

Ethics declarations

Funding

Not applicable.

Conflict of interest

Cristina Valencia-Sanchez reports no disclosures. Dean M. Wingerchuk has consulted for MedImmune, Novartis, Biogen, Celgene, Genentech, TG Therapeutics, Third Rock Ventures, Reistone, and Viela Bio. He has received research grants from Alexion and TerumoBCT.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

CV-S drafted the review. DMW critically reviewed and edited the review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia-Sanchez, C., Wingerchuk, D.M. Emerging Targeted Therapies for Neuromyelitis Optica Spectrum Disorders. BioDrugs 35, 7–17 (2021). https://doi.org/10.1007/s40259-020-00460-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-020-00460-9

Navigation