Skip to main content
Log in

Immunomodulating Drugs Based on Poxviral Proteins

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

An unusually high production of cytokines or chemokines as well as increased complement activation can drive development of chronic inflammatory autoimmune diseases. State-of-the-art biological therapies, recombinant receptors, or specific antibodies that target immune and inflammatory mediators are now effectively used. However, these newer drugs are not equally effective for all patients and can cause adverse effects, making the search for new immunomodulatory proteins of great importance. The poxviruses—first and foremost, the variola (smallpox) virus, which is highly pathogenic in man—code for numerous highly evolved and extraordinarily effective immunomodulatory proteins that bind cytokines, chemokines, and proteins of the complement system. The discovery of and investigation into immune modulators from the variola virus has great potential for guiding new and effective drugs for autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol. 2001;2:108–15.

    Article  CAS  PubMed  Google Scholar 

  2. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171:715–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Rahman MM, Lucas AR, McFadden G. Viral TNF inhibitors as potential therapeutics. In: Fallon PG, editor. Pathogen-derived immunomodulatory molecules. New York: Springer Science + Business Media; 2009. p. 64–77.

    Chapter  Google Scholar 

  4. Li K, Sacks SH, Zhou W. The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Mol Immunol. 2007;44:3866–74.

    Article  CAS  PubMed  Google Scholar 

  5. Bucht A, Larsson P, Weisbrot L, et al. Expression of interferon-gamma (IFN-gamma), IL-10, IL-12 and transforming growth factor-beta (TGF-beta) mRNA in synovial fluid cells from patients in the early and late phases of rheumatoid arthritis (RA). Clin Exp Immunol. 1996;103:357–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hitraya EG, Schaible TF. Anti-tumor necrosis factor therapies in Crohn’s disease and rheumatoid arthritis. In: Ciliberto G, Savino R, editors. Cytokine inhibitors. New York: Marcel Dekker, Inc.; 2001. p. 97–131.

  7. Skurkovich S, Loukina G, Sigidin Y, Skurkovich B. Successful first-time use of antibodies to interferon-gamma alone and in combined with antibodies to tumor necrosis factor-alfa to treat rheumatic disease (rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, Behcet`s syndrome). Int J Immunother. 1998;14:23–32.

    CAS  Google Scholar 

  8. Skurkovich S, Boiko A, Beliaeva I, et al. Randomized study of antibodies to IFN-gamma and TNF-alpha in secondary progressive multiple sclerosis. Mult Scler. 2001;7:277–84.

    CAS  PubMed  Google Scholar 

  9. Alcami A, Koszinowski UH. Viral mechanisms of immune evasion. Mol Med Today. 2000;9:365–72.

    Article  Google Scholar 

  10. Seet BT, Johnston JB, Brunetti CR, et al. Poxviruses and immune evasion. Annu Rev Immunol. 2003;21:377–423.

    Article  CAS  PubMed  Google Scholar 

  11. Shchelkunov SN. Orthopoxvirus genes that mediate disease virulence and host tropism. Adv Virol. 2012;. doi:10.1155/2012/524743.

    PubMed Central  PubMed  Google Scholar 

  12. Jha P, Kotwal GJ. Vaccinia complement control protein: multi-functional protein and potential wonder drug. J Biosci. 2003;28:265–71.

    Article  CAS  PubMed  Google Scholar 

  13. Lucas A, McFadden G. Secreted immunomodulatory viral proteins as novel biotherapeutics. J Immunol. 2004;173:4765–74.

    Article  CAS  PubMed  Google Scholar 

  14. Chen H, Zheng D, Davids J, et al. Viral serpin therapeutics from concept to clinic. Methods Enzymol. 2011;499:301–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Shchelkunov SN, Marennikova SS, Moyer RW. Orthopoxviruses pathogenic for humans. Berlin: Springer; 2005. p. 425.

    Google Scholar 

  16. Smith GL, Benfield CTO, de Motes CM, et al. Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol. 2013;94:2367–92.

    Article  CAS  PubMed  Google Scholar 

  17. Shchelkunov SN. Functional organization of variola major and vaccinia virus genomes. Virus Genes. 1995;10:53–71.

    Article  CAS  PubMed  Google Scholar 

  18. Shchelkunov SN, Safronov PF, Totmenin AV, et al. The genomic sequence analysis of the left and fight species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology. 1998;243:432–60.

    Article  CAS  PubMed  Google Scholar 

  19. Shchelkunov SN, Totmenin AV, Safronov PF, et al. Analysis of the monkeypox virus genome. Virology. 2002;297:172–94.

    Article  CAS  PubMed  Google Scholar 

  20. Shchelkunov SN. Interaction of orthopoxviruses with the cellular ubiquitin-ligase system. Virus Genes. 2010;41:309–18.

    Article  CAS  PubMed  Google Scholar 

  21. Gileva IP, Nepomnyashchikh TS, Antonets DV, et al. Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different. Biochim Biophys Acta. 2006;1764:1710–8.

    Article  CAS  PubMed  Google Scholar 

  22. Epperson ML, Lee CA, Fremont DH. Subversion of cytokine networks by virally encoded decoy receptors. Immunol Rev. 2012;250:199–215.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Shchelkunov SN. How long ago did smallpox virus emerge? Arch Virol. 2009;154:1865–71.

    Article  CAS  PubMed  Google Scholar 

  24. Shchelkunov SN. Emergence and reemergence of smallpox: the need in development of a new generation smallpox vaccine. Vaccine. 2011;29(Suppl. 4):D49–53.

    Article  PubMed  Google Scholar 

  25. Shisler JL. Immune evasion strategies of molluscum contagiosum virus. Adv Virus Res. 2015;92:201–52.

    Article  PubMed  Google Scholar 

  26. Brandt J, Braun J. Anti-TNF-alpha agents in the treatment of psoriatic arthritis. Expert Opin Biol Ther. 2006;6:99–107.

    Article  CAS  PubMed  Google Scholar 

  27. Culy CR, Keating GM. Spotlight on etanercept in rheumatoid arthritis, psoriatic arthritis and juvenile rheumatoid arthritis. BioDrugs. 2003;17:139–45.

    Article  PubMed  Google Scholar 

  28. Agarwal SK. Biologic agents in rheumatoid arthritis: an update for managed care professionals. J Manag Care Pharm. 2011;17:S14–8.

    PubMed  Google Scholar 

  29. Baji P, Pentek M, Czirjak L, et al. Efficacy and safety of infliximab-biosimilar compared to other biological drugs in rheumatoid arthritis: a mixed treatment comparison. Eur J Health Econ. 2014;15:S53–64.

    Article  PubMed  Google Scholar 

  30. Mease PJ, Wei N, Fudman EJ, et al. Safety, tolerability, and clinical outcomes after intraarticular injection of a recombinant adeno-associated vector containing a tumor necrosis factor antagonist gene: results of phase ½ study. J Rheumatol. 2010;37:692–703.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou X, Gao K, Shen L, et al. Modulation of immune and inflammatory responses on experimental arthritis following intraarticular gene transfer of tumor necrosis factor receptor-immunoglobulin Fc. Rheumatol Int. 2012;32:2605–14.

    Article  CAS  PubMed  Google Scholar 

  32. Alejo A, Ruiz-Arguello MB, Ho Y, et al. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci USA. 2006;103:5995–6000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Antonets DV, Nepomnyashchikh TS, Shchelkunov SN. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family. BMC Res Notes. 2010;3:e271.

    Article  Google Scholar 

  34. Nepomnyashchikh TS, Gileva IP, Grazhdantseva AA, et al. Comparison of properties of TNF-binding orthopoxvirus proteins and their chimeras with an IgG heavy chain fragment. Mol Med. 2008;2:48–55.

    Google Scholar 

  35. Gileva IP, Nepomnyashchikh TS, Ryazankin IA, Shchelkunov SN. Recombinant TNF-binding protein from variola virus as a novel potential TNF antagonist. Biochemistry (Moscow). 2009;74:1356–62.

    Article  CAS  Google Scholar 

  36. Ivanisenko NV, Tregubchak TV, Saik OV, et al. Exploring interaction of TNF and orthopoxviral CrmB protein by surface plasmon resonance and free energy calculation. Prot Pept Lett. 2014;21:1273–81.

    CAS  Google Scholar 

  37. Tsyrendorzhiev DD, Sennikov SV, Orlovskaya IA, et al. Efficiency of recombinant TNF-binding protein from variola virus in a model of collagen-induced arthritis. Med Immunol. 2013;15:513–24.

    Article  Google Scholar 

  38. Gileva IP, Viazovaia EA, Toporkova LB, et al. TNF binding protein of variola virus acts as a TNF antagonist at epicutaneous application. Curr Pharm Biotech. 2015;16:72–6.

    Article  CAS  Google Scholar 

  39. Tregubchak TV, Shekhovtsov SV, Nepomnyashchikh TS, et al. TNF-binding domain of the variola virus CrmB protein synthesized in Escherichia coli cells effectively interacts with human TNF. Dokl Biochem Biophys. 2015;462:176–80.

    Article  CAS  PubMed  Google Scholar 

  40. Tsyrendorzhiev DD, Orlovskaya IA, Sennikov SV, et al. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein. Bull Exp Biol. 2014;157:249–52.

    Article  CAS  Google Scholar 

  41. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171:715–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Li K, Sacks SH, Zhou W. The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Mol Immunol. 2007;44:3866–74.

    Article  CAS  PubMed  Google Scholar 

  43. Uvarova EA, Shchelkunov SN. Species-specific differences in the structure of orthopoxvirus complement-binding protein. Virus Res. 2001;81:39–45.

    Article  CAS  PubMed  Google Scholar 

  44. Kotwal GJ, Moss B. Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature. 1988;335:176–8.

    Article  CAS  PubMed  Google Scholar 

  45. Liszewski MK, Atkinson JP. Novel complement inhibitors. Exp Opin Invest Drugs. 1998;7:323–31.

    Article  CAS  Google Scholar 

  46. Smith SA, Mullin NP, Parkinson J, et al. Conserved surface-exposed K/R-X-K/R motifs and net positive charge on poxvirus complement control proteins serve as putative heparin binding sites and contribute to inhibition of molecular interactions with human endothelial cells: a novel mechanism for evasion of host defense. J Virol. 2000;74:5659–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Liszewski MK, Leung MK, Hauhart R, et al. Structure and regulatory profile of the monkeypox inhibitor of complement: comparison to homologs in vaccinia and variola and evidence for dimer formation. J Immunol. 2006;176:3725–34.

    Article  CAS  PubMed  Google Scholar 

  48. Miller CG, Shchelkunov SN, Kotwal GJ. The cowpox virus-encoded homolog of the vaccinia virus complement control protein is an inflammation modulatory protein. Virology. 1997;229:126–33.

    Article  CAS  PubMed  Google Scholar 

  49. Rosengard AM, Liu Y, Nie Z, Jimenez R. Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement. Proc Natl Acad Sci USA. 2002;99:8808–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ghebremariam YT, Odunuga OO, Janse K, Kotwal GJ. Humanized recombinant vaccinia virus complement control protein (hrVCP) with three amino acid changes, H98Y, E102K, and E120K creating an additional putative heparin binding site, is 100-fold more active than rVCP in blocking both classical and alternative complement pathways. Ann N Y Acad Sci. 2005;1056:113–22.

    Article  CAS  PubMed  Google Scholar 

  51. Pillay NS, Kellaway LA, Kotwal GJ. Administration of vaccinia virus complement control protein shows significant cognitive improvement in a mild injury model. Ann N Y Acad Sci. 2005;1056:450–61.

    Article  CAS  PubMed  Google Scholar 

  52. Pillay NS, Kellaway LA, Kotwal GJ. Vaccinia virus complement control protein significantly improves sensorimotor function recovery after severe head trauma. Brain Res. 2007;1153:158–65.

    Article  CAS  PubMed  Google Scholar 

  53. Reynolds DN, Smith SA, Zhang YP, et al. Vaccinia virus complement control protein modulates inflammation following spinal cord injury. Ann N Y Acad Sci. 2003;1010:534–9.

    Article  CAS  PubMed  Google Scholar 

  54. Reynolds DN, Smith SA, Zhang YP, et al. Vaccinia virus complement control protein reduces inflammation and improves spinal cord integrity following spinal cord injury. Ann N Y Acad Sci. 2004;1035:165–78.

    Article  CAS  PubMed  Google Scholar 

  55. Thorbjornsdottir P, Kolka R, Gunnarsson E, et al. Vaccinia virus complement control protein diminishes formation of atherosclerotic lesions: complement is centrally involved in atherosclerotic disease. Ann N Y Acad Sci. 2005;1056:1–15.

    Article  CAS  PubMed  Google Scholar 

  56. Anderson JB, Smith SA, van Wijk R, et al. Vaccinia virus complement control protein inhibits hyperacute xenorejection in a guinea pig-to-rat heterotopic cervical cardiac xenograft model by blocking both xenoantibody binding and complement pathway activation. Transpl Immunol. 2003;11:129–35.

    Article  CAS  PubMed  Google Scholar 

  57. Anderson JB, Smith SA, van Wijk R, et al. Vaccinia virus complement control protein ameliorates hyperacute xenorejection by inhibiting xenoantibody binding. Transplant Proc. 2002;34:3277–81.

    Article  CAS  PubMed  Google Scholar 

  58. Alcami A, Lira SA. Modulation of chemokine activity by viruses. Curr Opin Immunol. 2010;22:482–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lalani AS, Graham K, Mossman K, et al. The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J Virol. 1997;71:4356–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Lindow M, Luttichau HR, Schwartz TW. Viral leads for chemokine-modulatory drugs. Trends Pharmacol Sci. 2003;24:126–30.

    Article  CAS  PubMed  Google Scholar 

  61. Boomker JM, de Leij LF, The TH, Harmsen MC. Viral chemokine-modulatory proteins: tools and targets. Cytokine Growth Factor Rev. 2005;16:91–103.

    Article  CAS  PubMed  Google Scholar 

  62. Liu L, Lalani A, Dai E, et al. The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury. J Clin Invest. 2000;105:1613–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bedard EL, Kim P, Jiang J, et al. Chemokine-binding viral protein M-T7 prevents chronic rejection in rat renal allografts. Transplantation. 2003;76:249–52.

    Article  CAS  PubMed  Google Scholar 

  64. Liu L, Dai E, Miller L, et al. Viral chemokine-binding proteins inhibit inflammatory responses and aortic allograft transplant vasculopathy in rat models. Transplantation. 2004;77:1652–60.

    Article  CAS  PubMed  Google Scholar 

  65. Dai E, Liu L-Y, Wang H, et al. Inhibition of chemokine-glycosaminglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection. PLoS ONE. 2010;5:e10510.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Dabbagh K, Xiao Y, Smith C, et al. Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J Immunol. 2000;165:3418–22.

    Article  CAS  PubMed  Google Scholar 

  67. Bursill CA, Cash JL, Channon KM, Greaves DR. Membrane-bound CC chemokine inhibitor 35K provides localized inhibition of CC chemokine activity in vitro and in vivo. J Immunol. 2006;177:5567–73.

    Article  CAS  PubMed  Google Scholar 

  68. White GE, McNeill E, Christou I, et al. Site-directed mutagenesis of the CC chemokine binding protein 35K-Fc reveals residues essential for activity and mutations that increase the potency of CC chemokine blockade. Mol Pharmacol. 2011;80:328–36.

    Article  CAS  PubMed  Google Scholar 

  69. White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation-therapeutic opportunities and pharmacological challenges. Pharmacol Rev. 2013;65:47–89.

    Article  CAS  PubMed  Google Scholar 

  70. Bursill CA, Choudhury RP, Ali Z, et al. Broad-spectrum CC-chemokine blockade by gene transfer inhibits macrophage recruitment and atherosclerotic plaque formation in apolipoprotein E-knockout mice. Circulation. 2004;110:2460–6.

    Article  CAS  PubMed  Google Scholar 

  71. Bursill CA, McNeill E, Wang L, et al. Lentiviral gene transfer to reduce atherosclerosis progression by long-term CC-chemokine inhibition. Gene Ther. 2009;16:93–102.

    Article  CAS  PubMed  Google Scholar 

  72. Bucht A, Larsson P, Weisbrot L, et al. Expression of interferon-gamma (IFN-gamma), IL-10, IL-12 and transforming growth factor-beta (TGF-beta) mRNA in synovial fluid cells from patients in the early and late phases of rheumatoid arthritis (RA). Clin Exp Immunol. 1996;103:357–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Autschbach F, Giese T, Gassler N, et al. Cytokine/chemokine messenger-RNA expression profiles in ulcerative colitis and Crohn’s disease. Virchows Arch. 2002;441:500–13.

    Article  CAS  PubMed  Google Scholar 

  74. Asadullah K, Docke WD, Volk HD, Sterry W. The pathophysiological role of cytokines in psoriasis. Drugs Today (Barc). 1999;35:913–24.

    CAS  PubMed  Google Scholar 

  75. Almawi WY, Tamim H, Azar ST. T helper type 1 and 2 cytokines mediate the onset and progression of type I (insulin-dependent) diabetes. J Clin Endocrinol Metab. 1999;84:1497–502.

    Article  CAS  PubMed  Google Scholar 

  76. Sany Y. Cytokine expression during orthotopic allograft rejection in mice. Invest Ophthalmol Vis Sci. 1998;39:1953–7.

    Google Scholar 

  77. Hoffmann R. The potential role of cytokines and T cells in alopecia areata. J Invest Dermatol. 1999;4:235–48.

    Article  CAS  Google Scholar 

  78. http://www.clinicaltrials.gov/ct/show/NCT00072943. Accessed 22 Jan 2016.

  79. Alcami A, Smith GL. Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol. 1995;69:4633–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Smith VP, Alcami A. Inhibition of interferons by ectromelia virus. J Virol. 2002;76:1124–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Nepomnyashchikh TS, Lebedev LR, Ryazankin IA, et al. Comparison of the interferon-gamma binding proteins of the variola and monkeypox viruses. Mol Biol (Moscow). 2005;39:926–33.

    Article  CAS  Google Scholar 

  82. Nuara AA, Bai H, Chen N, et al. The unique C termini of orthopoxvirus gamma interferon binding proteins are essential for ligand binding. J Virol. 2006;80:10675–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Tardif JC, L’Allier PPL, Gregoire J, et al. A randomized controlled, phase 2 trail of the viral serpin Serp-1 in patients with acute coronary syndromes undergoing percutaneous coronary intervention. Circ Cardiovasc Interv. 2010;3:543–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei N. Shchelkunov.

Ethics declarations

Conflict of interest

GAS and SNS declare that they have no conflicts of interest.

Funding

This work was supported by the Russian Science Foundation (Grant No. 14-15-00050).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchelkunova, G.A., Shchelkunov, S.N. Immunomodulating Drugs Based on Poxviral Proteins. BioDrugs 30, 9–16 (2016). https://doi.org/10.1007/s40259-016-0158-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-016-0158-5

Keywords

Navigation