Skip to main content
Log in

The Skin Microbiome and its Significance for Dermatologists

  • Leading Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

The skin is a physical and immunological barrier to the external environment. Its large surface area is colonized by diverse communities of microorganisms, including bacteria, viruses, fungi, and Demodex species mites. These microorganisms and their genetic material together create the skin microbiome. Physiologic and anatomic properties of skin sites create biogeographical habitats (dry, moist, and sebaceous) where distinct microbiota communities reside. Although, in general, the composition of these habitats is maintained from person to person, the skin microbiome of an individual also has unique microbial features. Dysbiosis occurs when the normal abundance, composition, or location of the microbiota is changed, most notably there is a decrease in flora diversity. Certain skin diseases, including atopic dermatitis, rosacea, and psoriasis are associated with cutaneous dysbiosis, and even disruption of the gut microbiota. Studies have shown that current treatments for these dermatologic conditions can alter/stabilize the skin microbiome, and there is emerging research detailing the impact of prebiotics, probiotics, and postbiotics on these conditions. Although clinical guidelines do not currently exist, clinical studies support the safety and possible benefits of using topical prebiotics and postbiotics and oral probiotics for a variety of skin conditions. Until such guidelines exist, utilizing carefully designed clinical studies to inform clinical practice is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gallo RL. Human skin is the largest epithelial surface for interaction with microbes. J Investig Dermatol. 2017;137:1213–4.

    Article  CAS  PubMed  Google Scholar 

  2. Borkowski AW, Gallo RL. The coordinated response of the physical and antimicrobial peptide barriers of the skin. J Investig Dermatol. 2011;131:285–7.

    Article  CAS  PubMed  Google Scholar 

  3. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15:1377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev Genomics Hum Genet. 2012;13:151–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55.

    Article  CAS  PubMed  Google Scholar 

  6. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.

    Article  PubMed  Google Scholar 

  8. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491–502.

    Article  PubMed  Google Scholar 

  9. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18:649–67.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  ADS  Google Scholar 

  11. Proctor L. Priorities for the next 10 years of human microbiome research. Nature. 2019;569:623–5.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Oh J, Byrd AL, Deming C, Conlan S, NISC Comparative Sequencing Program, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514:59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao Z, Perez-Perez GI, Chen Y, Blaser MJ. Quantitation of major human cutaneous bacterial and fungal populations. J Clin Microbiol. 2010;48:3575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Gao Z, Tseng C, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA. 2007;104:2927–32.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498:367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Investig Dermatol. 2011;131:2026–32.

    Article  CAS  PubMed  Google Scholar 

  20. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  21. Stamatas GN, Roux P-F, Boireau-Adamezyk E, Lboukili I, Oddos T. Skin maturation from birth to 10 years of age: structure, function, composition and microbiome. Exp Dermatol. 2023;32:1420–9.

    Article  PubMed  Google Scholar 

  22. Perez Perez GI, Gao Z, Jourdain R, Ramirez J, Gany F, Clavaud C, et al. Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PLoS One. 2016;11: e0151990.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oh J, Byrd AL, Park M, NISC Comparative Sequencing Program, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell. 2016;165:854–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grice EA, Kong HH, Renaud G, Young AC, NISC Comparative Sequencing Program, Bouffard GG, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18:1043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lehtimäki J, Karkman A, Laatikainen T, Paalanen L, von Hertzen L, Haahtela T, et al. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Sci Rep. 2017;7: 45651.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  26. Zhu T, Liu X, Kong F-Q, Duan Y-Y, Yee AL, Kim M, et al. Age and mothers: potent influences of children’s skin microbiota. J Investig Dermatol. 2019;139:2497-505.e6.

    Article  CAS  PubMed  Google Scholar 

  27. Blaser MJ, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Estrada I, et al. Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME J. 2013;7:85–95.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez ME, Schaffer JV, Orlow SJ, Gao Z, Li H, Alekseyenko AV, et al. Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. J Am Acad Dermatol. 2016;75:481-93.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chien AL, Tsai J, Leung S, Mongodin EF, Nelson AM, Kang S, et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics. JAMA Dermatol. 2019;155:425–34.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wongtada C, Prombutara P, Asawanonda P, Noppakun N, Kumtornrut C, Chatsuwan T. Distinct skin microbiome modulation following different topical acne treatments in mild acne vulgaris patients: a randomized, investigator-blinded exploratory study. Exp Dermatol. 2023;32:906–14.

    Article  CAS  PubMed  Google Scholar 

  31. Nolan ZT, Banerjee K, Cong Z, Gettle SL, Longenecker AL, Kawasawa YI, et al. Treatment response to isotretinoin correlates with specific shifts in Cutibacterium acnes strain composition within the follicular microbiome. Exp Dermatol. 2023;32:955–64.

    Article  CAS  PubMed  Google Scholar 

  32. McCoy WH, Otchere E, Rosa BA, Martin J, Mann CM, Mitreva M. Skin ecology during sebaceous drought: how skin microbes respond to isotretinoin. J Investig Dermatol. 2019;139:732–5.

    Article  CAS  PubMed  Google Scholar 

  33. Rocha LA, Ferreira de Almeida E Borges L, Gontijo Filho PP. Changes in hands microbiota associated with skin damage because of hand hygiene procedures on the health care workers. Am J Infect Control. 2009;37:155–9.

    Article  PubMed  Google Scholar 

  34. Baldwin HE, Bhatia ND, Friedman A, Eng RM, Seite S. The role of cutaneous microbiota harmony in maintaining a functional skin barrier. J Drugs Dermatol. 2017;16:12–8.

    CAS  PubMed  Google Scholar 

  35. Liu Q, Ranallo R, Rios C, Grice EA, Moon K, Gallo RL. Crosstalk between skin microbiota and immune system in health and disease. Nat Immunol. 2023;24:895–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams MR, Nakatsuji T, Gallo RL. Staphylococcus aureus: master manipulator of the skin. Cell Host Microbe. 2017;22:579–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meylan P, Lang C, Mermoud S, Johannsen A, Norrenberg S, Hohl D, et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Investig Dermatol. 2017;137:2497–504.

    Article  CAS  PubMed  Google Scholar 

  38. Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng W-I, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9:eaa14651.

    Article  Google Scholar 

  39. Williams MR, Gallo RL. Evidence that human skin microbiome dysbiosis promotes atopic dermatitis. J Investig Dermatol. 2017;137:2460–1.

    Article  CAS  PubMed  Google Scholar 

  40. Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe. 2017;22:667-77.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe. 2017;22:653-66.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakatsuji T, Chen TH, Two AM, Chun KA, Narala S, Geha RS, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Investig Dermatol. 2016;136:2192–200.

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhary PP, Myles IA, Zeldin J, Dabdoub S, Deopujari V, Baveja R, et al. Shotgun metagenomic sequencing on skin microbiome indicates dysbiosis exists prior to the onset of atopic dermatitis. Allergy. 2023;78:2724–31.

    Article  CAS  PubMed  Google Scholar 

  44. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee S-J, Kim S-E, Shin K-O, Park K, Lee SE. Dupilumab therapy improves stratum corneum hydration and skin dysbiosis in patients with atopic dermatitis. Allergy Asthma Immunol Res. 2021;13:762–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beck LA, Bieber T, Weidinger S, Tauber M, Saeki H, Irvine AD, et al. Tralokinumab treatment improves the skin microbiota by increasing the microbial diversity in adults with moderate-to-severe atopic dermatitis: analysis of microbial diversity in ECZTRA 1, a randomized controlled trial. J Am Acad Dermatol. 2023;88:816–23.

    Article  CAS  PubMed  Google Scholar 

  47. Seite S, Bieber T. Barrier function and microbiotic dysbiosis in atopic dermatitis. Clin Cosmet Investig Dermatol. 2015;8:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seite S, Flores GE, Henley JB, Martin R, Zelenkova H, Aguilar L, et al. Microbiome of affected and unaffected skin of patients with atopic dermatitis before and after emollient treatment. J Drugs Dermatol. 2014;13:1365–72.

    PubMed  Google Scholar 

  49. Liu-Walsh F, Tierney NK, Hauschild J, Rush AK, Masucci J, Leo GC, et al. Prebiotic colloidal oat supports the growth of cutaneous commensal bacteria including S. epidermidis and enhances the production of lactic acid. Clin Cosmet Investig Dermatol. 2021;14:73–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Capone K, Kirchner F, Klein SL, Tierney NK. Effects of colloidal oatmeal topical atopic dermatitis cream on skin microbiome and skin barrier properties. J Drugs Dermatol. 2020;19:524–31.

    Article  PubMed  Google Scholar 

  51. Umborowati MA, Damayanti D, Anggraeni S, Endaryanto A, Surono IS, Effendy I, et al. The role of probiotics in the treatment of adult atopic dermatitis: a meta-analysis of randomized controlled trials. J Health Popul Nutr. 2022;41:37.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Myles IA, Earland NJ, Anderson ED, Moore IN, Kieh MD, Williams KW, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight. 2018;3: e120608.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chang Y-S, Trivedi MK, Jha A, Lin Y-F, Dimaano L, García-Romero MT. Synbiotics for prevention and treatment of atopic dermatitis: a meta-analysis of randomized clinical trials. JAMA Pediatr. 2016;170:236–42.

    Article  PubMed  Google Scholar 

  54. Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci. 2019;20:4673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seité S, Zelenkova H, Martin R. Clinical efficacy of emollients in atopic dermatitis patients—relationship with the skin microbiota modification. Clin Cosmet Investig Dermatol. 2017;10:25–33.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tanojo N, Citrashanty I, Utomo B, Listiawan Y, Ervianti E, Damayanti, et al. Oral postbiotics derived from Lactobacillus sp. in treatment of atopic dermatitis: a meta-analysis. Acta Dermatovenerol Alp Pannonica Adriat. 2023;32:41–7.

    PubMed  Google Scholar 

  57. Ahn CS, Huang WW. Rosacea pathogenesis. Dermatol Clin. 2018;36:81–6.

    Article  CAS  PubMed  Google Scholar 

  58. Whitfeld M, Gunasingam N, Leow LJ, Shirato K, Preda V. Staphylococcus epidermidis: a possible role in the pustules of rosacea. J Am Acad Dermatol. 2011;64:49–52.

    Article  PubMed  Google Scholar 

  59. Wang R, Farhat M, Na J, Li R, Wu Y. Bacterial and fungal microbiome characterization in patients with rosacea and healthy controls. Br J Dermatol. 2020;183:1112–4.

    Article  CAS  PubMed  Google Scholar 

  60. Holmes AD. Potential role of microorganisms in the pathogenesis of rosacea. J Am Acad Dermatol. 2013;69:1025–32.

    Article  PubMed  Google Scholar 

  61. Zhu W, Hamblin MR, Wen X. Role of the skin microbiota and intestinal microbiome in rosacea. Front Microbiol. 2023;14:1108661.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tutka K, Żychowska M, Reich A. Diversity and composition of the skin, blood and gut microbiome in rosacea: a systematic review of the literature. Microorganisms. 2020;8:1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao YE, Wu LP, Peng Y, Cheng H. Retrospective analysis of the association between Demodex infestation and rosacea. Arch Dermatol. 2010;146:896–902.

    PubMed  Google Scholar 

  64. Sattler EC, Maier T, Hoffmann VS, Hegyi J, Ruzicka T, Berking C. Noninvasive in vivo detection and quantification of Demodex mites by confocal laser scanning microscopy. Br J Dermatol. 2012;167:1042–7.

    Article  CAS  PubMed  Google Scholar 

  65. Casas C, Paul C, Lahfa M, Livideanu B, Lejeune O, Alvarez-Georges S, et al. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp Dermatol. 2012;21:906–10.

    Article  CAS  PubMed  Google Scholar 

  66. Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157:474–81.

    Article  CAS  PubMed  Google Scholar 

  67. O’Reilly N, Menezes N, Kavanagh K. Positive correlation between serum immunoreactivity to Demodex-associated Bacillus proteins and erythematotelangiectatic rosacea. Br J Dermatol. 2012;167:1032–6.

    Article  PubMed  Google Scholar 

  68. O’Reilly N, Bergin D, Reeves EP, McElvaney NG, Kavanagh K. Demodex-associated bacterial proteins induce neutrophil activation. Br J Dermatol. 2012;166:753–60.

    Article  PubMed  Google Scholar 

  69. Fitz-Gibbon S, Tomida S, Chiu B-H, Nguyen L, Du C, Liu M, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Investig Dermatol. 2013;133:2152–60.

    Article  CAS  PubMed  Google Scholar 

  70. Pécastaings S, Roques C, Nocera T, Peraud C, Mengeaud V, Khammari A, et al. Characterisation of Cutibacterium acnes phylotypes in acne and in vivo exploratory evaluation of Myrtacine®. J Eur Acad Dermatol Venereol. 2018;32(Suppl 2):15–23.

    Article  PubMed  Google Scholar 

  71. Dréno B, Dagnelie MA, Khammari A, Corvec S. The skin microbiome: a new actor in inflammatory acne. Am J Clin Dermatol. 2020;21:18–24.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li C-X, You Z-X, Lin Y-X, Liu H-Y, Su J. Skin microbiome differences relate to the grade of acne vulgaris. J Dermatol. 2019;46:787–90.

    Article  CAS  PubMed  Google Scholar 

  73. Sun L, Wang Q, Wang H, Huang J, Yu Z. A cross-sectional cohort study on the skin microbiota in patients with different acne durations. Exp Dermatol. 2023;32:2102–11.

    Article  CAS  PubMed  Google Scholar 

  74. Gao Z, Tseng C, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3: e2719.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  75. Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1:31.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tao R, Li R, Wan Z, Wu Y, Wang R. Skin microbiome signatures associated with psoriasis and seborrheic dermatitis. Exp Dermatol. 2022;31:1116–8.

    Article  PubMed  Google Scholar 

  77. Fahlén A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304:15–22.

    Article  PubMed  Google Scholar 

  78. Chang H-W, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6:154.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cohen AD, Dreiher J, Birkenfeld S. Psoriasis associated with ulcerative colitis and Crohn’s disease. J Eur Acad Dermatol Venereol. 2009;23:561–5.

    Article  CAS  PubMed  Google Scholar 

  80. Visser MJE, Kell DB, Pretorius E. Bacterial dysbiosis and translocation in psoriasis vulgaris. Front Cell Infect Microbiol. 2019;9:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67:128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rather IA, Bajpai VK, Huh YS, Han Y-K, Bhat EA, Lim J, et al. Probiotic Lactobacillus sakei proBio-65 extract ameliorates the severity of imiquimod induced psoriasis-like skin inflammation in a mouse model. Front Microbiol. 2018;9:1021.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Moludi J, Fathollahi P, Khedmatgozar H, Pourteymour Fard Tabrizi F, Ghareaghaj Zare A, Razmi H, et al. Probiotics supplementation improves quality of life, clinical symptoms, and inflammatory status in patients with psoriasis. J Drugs Dermatol. 2022;21:637–44.

    Article  PubMed  Google Scholar 

  84. Martin R, Henley JB, Sarrazin P, Seité S. Skin microbiome in patients with psoriasis before and after balneotherapy at the Thermal Care Center of La Roche-Posay. J Drugs Dermatol. 2015;14:1400–5.

    PubMed  Google Scholar 

  85. Loesche MA, Farahi K, Capone K, Fakharzadeh S, Blauvelt A, Duffin KC, et al. Longitudinal study of the psoriasis-associated skin microbiome during therapy with ustekinumab in a randomized phase 3b clinical trial. J Investig Dermatol. 2018;138:1973–81.

    Article  CAS  PubMed  Google Scholar 

  86. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, et al. Skin Microbiome surveys are strongly influenced by experimental design. J Investig Dermatol. 2016;136:947–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Friedman.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of Interest

Cleo Whiting’s work is supported by an independent fellowship grant from Galderma. Sara Abel Azim’s work is supported by independent fellowship grants from Lilly and Pfizer. There are no financial disclosures, commercial associations, or any other conditions posing a conflict of interest to report for Adam Friedman.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Data were obtained from public domain resources.

Code Availability

Not applicable.

Author Contributions

All authors contributed to the conception and design of the manuscript. The literature search was performed by CW and SAA. The first draft of the manuscript was written by CW and SAA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whiting, C., Abdel Azim, S. & Friedman, A. The Skin Microbiome and its Significance for Dermatologists. Am J Clin Dermatol 25, 169–177 (2024). https://doi.org/10.1007/s40257-023-00842-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-023-00842-z

Navigation