Skip to main content
Log in

The Importance of Incorporating Human Factors in the Design and Implementation of Artificial Intelligence for Skin Cancer Diagnosis in the Real World

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Artificial intelligence (AI) algorithms have been shown to diagnose skin lesions with impressive accuracy in experimental settings. The majority of the literature to date has compared AI and dermatologists as opponents in skin cancer diagnosis. However, in the real-world clinical setting, the clinician will work in collaboration with AI. Existing evidence regarding the integration of such AI diagnostic tools into clinical practice is limited. Human factors, such as cognitive style, personality, experience, preferences, and attitudes may influence clinicians’ use of AI. In this review, we consider these human factors and the potential cognitive errors, biases, and unintended consequences that could arise when using an AI skin cancer diagnostic tool in the real world. Integrating this knowledge in the design and implementation of AI technology will assist in ensuring that the end product can be used effectively. Dermatologist leadership in the development of these tools will further improve their clinical relevance and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, et al. Melanoma. Lancet. 2018;392(10151):971–84.

    PubMed  Google Scholar 

  2. Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(6):472–92.

    PubMed  PubMed Central  Google Scholar 

  3. Gilmore SJ. Automated decision support in melanocytic lesion management. PLoS ONE. 2018;13(9):e0203459.

    PubMed  PubMed Central  Google Scholar 

  4. Mar VJ, Soyer HP. Artificial intelligence for melanoma diagnosis: how can we deliver on the promise? Ann Oncol. 2018;29(8):1625–8.

    CAS  PubMed  Google Scholar 

  5. Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S, et al. Artificial intelligence in dermatology-where we are and the way to the future: a review. Am J Clin Dermatol. 2020;21(1):41–7.

    PubMed  Google Scholar 

  6. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.

    CAS  PubMed  Google Scholar 

  7. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.

    CAS  PubMed  Google Scholar 

  9. Tschandl P, Rosendahl C, Akay BN, Argenziano G, Blum A, Braun RP, et al. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. 2019;155(1):58–65.

    PubMed  Google Scholar 

  10. Marchetti MA, Codella NCF, Dusza SW, Gutman DA, Helba B, Kalloo A, et al. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol. 2018;78(2):270 e1-277.

    Google Scholar 

  11. Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishitsuka Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol. 2019;180(2):373–81.

    CAS  PubMed  Google Scholar 

  12. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Investig Dermatol. 2018;138(7):1529–38.

    CAS  PubMed  Google Scholar 

  13. Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer. 2019;119:11–7.

    PubMed  Google Scholar 

  14. Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur J Cancer. 2019a;111:148–54.

    PubMed  Google Scholar 

  15. Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer. 2019b;113:47–54.

    PubMed  Google Scholar 

  16. Yu C, Yang S, Kim W, Jung J, Chung KY, Lee SW, et al. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS ONE. 2018;13(3):e0193321.

    PubMed  PubMed Central  Google Scholar 

  17. Du-Harpur X, Watt FM, Luscombe NM, Lynch MD. What is AI? Applications of artificial intelligence to dermatology. Br J Dermatol. 2020;183:423–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689.

    PubMed  PubMed Central  Google Scholar 

  19. Navarrete-Dechent C, Dusza SW, Liopyris K, Marghoob AA, Halpern AC, Marchetti MA. Automated dermatological diagnosis: hype or reality? J Investig Dermatol. 2018;138(10):2277–9.

    CAS  PubMed  Google Scholar 

  20. Gu Y, Ge Z, Bonnington CP, Zhou J. Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification. IEEE J Biomed Health Inform. 2020;24(5):1379–93.

    PubMed  Google Scholar 

  21. Tschandl P, Codella N, Akay BN, Argenziano G, Braun RP, Cabo H, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 2019;20(7):938–47.

    PubMed  PubMed Central  Google Scholar 

  22. Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231–7.

    PubMed  PubMed Central  Google Scholar 

  23. Adamson AS, Smith A. Machine learning and health care disparities in dermatology. JAMA Dermatol. 2018;154(11):1247–8.

    PubMed  Google Scholar 

  24. Haenssle HA, Fink C, Toberer F, Winkler J, Stolz W, Deinlein T, et al. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann Oncol. 2020;31(1):137–43.

    CAS  PubMed  Google Scholar 

  25. Hekler A, Utikal JS, Enk AH, Hauschild A, Weichenthal M, Maron RC, et al. Superior skin cancer classification by the combination of human and artificial intelligence. Eur J Cancer. 2019;120:114–21.

    PubMed  Google Scholar 

  26. Tschandl P, Rinner C, Apalla Z, Argenziano G, Codella N, Halpern A, et al. Human-computer collaboration for skin cancer recognition. Nat Med. 2020;26(8):1229–34.

    CAS  PubMed  Google Scholar 

  27. Sujan M, Furniss D, Grundy K, Grundy H, Nelson D, Elliott M, et al. Human factors challenges for the safe use of artificial intelligence in patient care. BMJ Health Care Inform. 2019;26(1):e100081.

    PubMed  PubMed Central  Google Scholar 

  28. Epstein S. Integration of the cognitive and the psychodynamic unconscious. Am Psychol. 1994;49(8):709–24.

    CAS  PubMed  Google Scholar 

  29. Evans JS. In two minds: dual-process accounts of reasoning. Trends Cogn Sci. 2003;7(10):454–9.

    PubMed  Google Scholar 

  30. Stanovich KE, West RF. Individual differences in reasoning: implications for the rationality debate? Behav Brain Sci. 2000;23(5):645–65 (discussion 65–726).

    CAS  PubMed  Google Scholar 

  31. Kahneman D. Thinking, fast and slow. New York: Farrar, Strauss and Giroux; 2011.

    Google Scholar 

  32. Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science. 1974;185(4157):1124–31.

    CAS  PubMed  Google Scholar 

  33. Norman GR, Monteiro SD, Sherbino J, Ilgen JS, Schmidt HG, Mamede S. The causes of errors in clinical reasoning: cognitive biases, knowledge deficits, and dual process thinking. Acad Med. 2017;92(1):23–30.

    PubMed  Google Scholar 

  34. van den Berge K, Mamede S. Cognitive diagnostic error in internal medicine. Eur J Intern Med. 2013;24(6):525–9.

    PubMed  Google Scholar 

  35. Frederick S. Cognitive reflection and decision making. J Econ Perspect. 2005;19(4):25–42.

    Google Scholar 

  36. Pacini R, Epstein S. The relation of rational and experiential information processing styles to personality, basic beliefs, and the ratio-bias phenomenon. J Pers Soc Psychol. 1999;76(6):972–87.

    CAS  PubMed  Google Scholar 

  37. Epstein S, Pacini R, Denes-Raj V, Heier H. Individual differences in intuitive-experiential and analytical-rational thinking styles. J Pers Soc Psychol. 1996;71(2):390–405.

    CAS  PubMed  Google Scholar 

  38. Moug SJ, Henderson N, Tiernan J, Bisset CN, Ferguson E, Harji D, et al. The colorectal surgeon’s personality may influence the rectal anastomotic decision. Colorectal Dis. 2018;20(11):970–80.

    CAS  PubMed  Google Scholar 

  39. Djulbegovic B, Beckstead JW, Elqayam S, Reljic T, Hozo I, Kumar A, et al. Evaluation of physicians’ cognitive styles. Med Decis Making. 2014;34(5):627–37.

    PubMed  Google Scholar 

  40. Tay SW, Ryan P, Ryan CA. Systems 1 and 2 thinking processes and cognitive reflection testing in medical students. Can Med Educ J. 2016;7(2):e97–103.

    PubMed  PubMed Central  Google Scholar 

  41. Brennan M, Puri S, Ozrazgat-Baslanti T, Feng Z, Ruppert M, Hashemighouchani H, et al. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: a pilot usability study. Surgery. 2019;165(5):1035–45.

    PubMed  Google Scholar 

  42. Sladek RM, Bond MJ, Huynh LT, Chew DP, Phillips PA. Thinking styles and doctors’ knowledge and behaviours relating to acute coronary syndromes guidelines. Implement Sci. 2008;3:23.

    PubMed  PubMed Central  Google Scholar 

  43. Calder LA, Forster AJ, Stiell IG, Carr LK, Brehaut JC, Perry JJ, et al. Experiential and rational decision making: a survey to determine how emergency physicians make clinical decisions. Emerg Med J. 2012;29(10):811–6.

    PubMed  Google Scholar 

  44. Sladek RM, Bond MJ, Phillips PA. Why don’t doctors wash their hands? A correlational study of thinking styles and hand hygiene. Am J Infect Control. 2008;36(6):399–406.

    PubMed  Google Scholar 

  45. Graber ML, Franklin N, Gordon R. Diagnostic error in internal medicine. Arch Intern Med. 2005;165(13):1493–9.

    PubMed  Google Scholar 

  46. Singh H, Giardina TD, Meyer AN, Forjuoh SN, Reis MD, Thomas EJ. Types and origins of diagnostic errors in primary care settings. JAMA Intern Med. 2013;173(6):418–25.

    PubMed  PubMed Central  Google Scholar 

  47. Lowenstein EJ, Sidlow R. Cognitive and visual diagnostic errors in dermatology: part 1. Br J Dermatol. 2018;179(6):1263–9.

    CAS  PubMed  Google Scholar 

  48. Cao LY, Taylor JS, Vidimos A. Patient safety in dermatology: a review of the literature. Dermatol Online J. 2010;16(1):3.

    PubMed  Google Scholar 

  49. Saposnik G, Redelmeier D, Ruff CC, Tobler PN. Cognitive biases associated with medical decisions: a systematic review. BMC Med Inform Decis Mak. 2016;16(1):138.

    PubMed  PubMed Central  Google Scholar 

  50. Blumenthal-Barby JS, Krieger H. Cognitive biases and heuristics in medical decision making: a critical review using a systematic search strategy. Med Decis Mak. 2015;35(4):539–57.

    CAS  Google Scholar 

  51. Croskerry P. The importance of cognitive errors in diagnosis and strategies to minimize them. Acad Med. 2003;78(8):775–80.

    PubMed  Google Scholar 

  52. Royce CS, Hayes MM, Schwartzstein RM. Teaching critical thinking: a case for instruction in cognitive biases to reduce diagnostic errors and improve patient safety. Acad Med. 2019;94(2):187–94.

    PubMed  Google Scholar 

  53. Graber ML, Kissam S, Payne VL, Meyer AN, Sorensen A, Lenfestey N, et al. Cognitive interventions to reduce diagnostic error: a narrative review. BMJ Qual Saf. 2012;21(7):535–57.

    PubMed  Google Scholar 

  54. Mamede S, Schmidt HG, Penaforte JC. Effects of reflective practice on the accuracy of medical diagnoses. Med Educ. 2008;42(5):468–75.

    PubMed  Google Scholar 

  55. Mamede S, van Gog T, van den Berge K, Rikers RM, van Saase JL, van Guldener C, et al. Effect of availability bias and reflective reasoning on diagnostic accuracy among internal medicine residents. JAMA. 2010;304(11):1198–203.

    CAS  PubMed  Google Scholar 

  56. Reilly JB, Ogdie AR, Von Feldt JM, Myers JS. Teaching about how doctors think: a longitudinal curriculum in cognitive bias and diagnostic error for residents. BMJ Qual Saf. 2013;22(12):1044–50.

    PubMed  Google Scholar 

  57. Mamede S, de Carvalho-Filho MA, de Faria RMD, Franci D, Nunes M, Ribeiro LMC, et al. “Immunising” physicians against availability bias in diagnostic reasoning: a randomised controlled experiment. BMJ Qual Saf. 2020;29:550–9.

    PubMed  PubMed Central  Google Scholar 

  58. Bond RR, Novotny T, Andrsova I, Koc L, Sisakova M, Finlay D, et al. Automation bias in medicine: the influence of automated diagnoses on interpreter accuracy and uncertainty when reading electrocardiograms. J Electrocardiol. 2018;51(6S):S6–11.

    PubMed  Google Scholar 

  59. Tsai TL, Fridsma DB, Gatti G. Computer decision support as a source of interpretation error: the case of electrocardiograms. J Am Med Inform Assoc. 2003;10(5):478–83.

    PubMed  PubMed Central  Google Scholar 

  60. Lyell D, Magrabi F, Raban MZ, Pont LG, Baysari MT, Day RO, et al. Automation bias in electronic prescribing. BMC Med Inform Decis Mak. 2017;17(1):28.

    PubMed  PubMed Central  Google Scholar 

  61. Goddard K, Roudsari A, Wyatt JC. Automation bias: a systematic review of frequency, effect mediators, and mitigators. J Am Med Inform Assoc. 2012;19(1):121–7.

    PubMed  Google Scholar 

  62. Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. J Am Med Inform Assoc. 2017;24(2):423–31.

    PubMed  Google Scholar 

  63. Lyell D, Magrabi F, Coiera E. The effect of cognitive load and task complexity on automation bias in electronic prescribing. Hum Factors. 2018;60(7):1008–21.

    PubMed  Google Scholar 

  64. Caliskan A, Bryson JJ, Narayanan A. Semantics derived automatically from language corpora contain human-like biases. Science. 2017;356(6334):183–6.

    CAS  PubMed  Google Scholar 

  65. Higgins S, Nazemi A, Feinstein S, Chow M, Wysong A. Clinical presentations of melanoma in African Americans, Hispanics, and Asians. Dermatol Surg. 2019;45(6):791–801.

    CAS  PubMed  Google Scholar 

  66. Chang JW. Acral melanoma: a unique disease in Asia. JAMA Dermatol. 2013;149(11):1272–3.

    PubMed  Google Scholar 

  67. Lee S, Chu YS, Yoo SK, Choi S, Choe SJ, Koh SB, et al. Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks. J Eur Acad Dermatol Venereol. 2020;34(8):1842–50.

    CAS  PubMed  Google Scholar 

  68. Whitaker M. The surgical personality: does it exist? Ann R Coll Surg Engl. 2018;100(1):72–7.

    PubMed  Google Scholar 

  69. Surbeck W, Samuel R, Spieler D, Seifritz E, Scantamburlo G, Stienen MN, et al. Neurologists, neurosurgeons, and psychiatrists' personality traits: a comparison. Acta Neurochir (Wien). 2020;162:(3) 461–8.

    PubMed  Google Scholar 

  70. Stienen MN, Scholtes F, Samuel R, Weil A, Weyerbrock A, Surbeck W. Different but similar: personality traits of surgeons and internists-results of a cross-sectional observational study. BMJ Open. 2018;8(7):e021310.

    PubMed  PubMed Central  Google Scholar 

  71. McGreevy J, Wiebe D. A preliminary measurement of the surgical personality. Am J Surg. 2002;184(2):121–5.

    PubMed  Google Scholar 

  72. Bogacheva N, Kornilova T, Pavlova E. Relationships between medical doctors’ personality traits and their professional risk perception. Behav Sci (Basel). 2019;10(1):6.

    PubMed Central  Google Scholar 

  73. Parker-Tomlin M, Boschen M, Glendon I, Morrissey S. Factors influencing health practitioners’ cognitive processing and decision-making style. J Interprof Care. 2019;33(5):546–57.

    PubMed  Google Scholar 

  74. Drosdeck JM, Osayi SN, Peterson LA, Yu L, Ellison EC, Muscarella P. Surgeon and nonsurgeon personalities at different career points. J Surg Res. 2015;196(1):60–6.

    PubMed  Google Scholar 

  75. Gosling SD, Rentfrow PJ, Swann WBJ. A very brief measure of the Big-Five personality domains. J Res Pers. 2003;37:504–28.

    Google Scholar 

  76. Yee LM, Liu LY, Grobman WA. The relationship between obstetricians’ cognitive and affective traits and their patients’ delivery outcomes. Am J Obstet Gynecol. 2014;211(6):692 e1–6.

    PubMed  Google Scholar 

  77. Strout TD, Hillen M, Gutheil C, Anderson E, Hutchinson R, Ward H, et al. Tolerance of uncertainty: a systematic review of health and healthcare-related outcomes. Patient Educ Couns. 2018;101(9):1518–37.

    PubMed  Google Scholar 

  78. Fink C, Blum A, Buhl T, Mitteldorf C, Hofmann-Wellenhof R, Deinlein T, et al. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. J Eur Acad Dermatol Venereol. 2020;34(6):1355–61.

    CAS  PubMed  Google Scholar 

  79. Raphael AP, Soyer HP. Automated diagnosis: shedding the light on skin cancer. Br J Dermatol. 2018;178(2):331–3.

    CAS  PubMed  Google Scholar 

  80. Khairat S, Coleman C, Ottmar P, Bice T, Koppel R, Carson SS. Physicians’ gender and their use of electronic health records: findings from a mixed-methods usability study. J Am Med Inform Assoc. 2019;26(12):1505–14.

    PubMed  PubMed Central  Google Scholar 

  81. Jarrahi MH. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus Horiz. 2018;61(4):577–86.

    Google Scholar 

  82. Smart A. A multi-dimensional model of clinical utility. Int J Qual Health Care. 2006;18(5):377–82.

    PubMed  Google Scholar 

  83. Shortliffe EH, Sepulveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. JAMA. 2018;320(21):2199–200.

    PubMed  Google Scholar 

  84. Budd S, Robinson EC, Kainz B. A Survey on Active Learning and Human-in-the-Loop Deep Learning for Medical Image Analysis. arXiv. 2019 (arXiv:1910.02923).

  85. Guo C, Pleiss G, Sun Y, Weinberger KQ. On Calibration of Modern Neural Networks. arXiv. 2017 (arXiv:1706.04599).

  86. Janda M, Soyer HP. Can clinical decision making be enhanced by artificial intelligence? Br J Dermatol. 2019;180(2):247–8.

    CAS  PubMed  Google Scholar 

  87. Zakhem GA, Fakhoury JW, Motosko CC, Ho RS. Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer: a systematic review. J Am Acad Dermatol. 2020.

  88. Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol. 2019;47(1):128–39.

    PubMed  Google Scholar 

  89. Cho I, Bates DW. Behavioral economics interventions in clinical decision support systems. Yearb Med Inform. 2018;27(1):114–21.

    PubMed  PubMed Central  Google Scholar 

  90. Norton MI, Mochon D, Ariely D. The IKEA effect: when labor leads to love. J Consum Psychol. 2012;22(3):453–60.

    Google Scholar 

  91. Buntin MB, Burke MF, Hoaglin MC, Blumenthal D. The benefits of health information technology: a review of the recent literature shows predominantly positive results. Health Aff (Millwood). 2011;30(3):464–71.

    PubMed  Google Scholar 

  92. Babbott S, Manwell LB, Brown R, Montague E, Williams E, Schwartz M, et al. Electronic medical records and physician stress in primary care: results from the MEMO Study. J Am Med Inform Assoc. 2014;21(e1):e100–6.

    PubMed  Google Scholar 

  93. Shanafelt TD, Dyrbye LN, Sinsky C, Hasan O, Satele D, Sloan J, et al. Relationship between clerical burden and characteristics of the electronic environment with physician burnout and professional satisfaction. Mayo Clin Proc. 2016;91(7):836–48.

    PubMed  Google Scholar 

  94. Arndt BG, Beasley JW, Watkinson MD, Temte JL, Tuan WJ, Sinsky CA, et al. Tethered to the EHR: primary care physician workload assessment using EHR event log data and time-motion observations. Ann Fam Med. 2017;15(5):419–26.

    PubMed  PubMed Central  Google Scholar 

  95. Makoul G, Curry RH, Tang PC. The use of electronic medical records: communication patterns in outpatient encounters. J Am Med Inform Assoc. 2001;8(6):610–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Graber ML, Siegal D, Riah H, Johnston D, Kenyon K. Electronic health record-related events in medical malpractice claims. J Patient Saf. 2019;15(2):77–85.

    PubMed  Google Scholar 

  97. Middleton B, Bloomrosen M, Dente MA, Hashmat B, Koppel R, Overhage JM, et al. Enhancing patient safety and quality of care by improving the usability of electronic health record systems: recommendations from AMIA. J Am Med Inform Assoc. 2013;20(e1):e2-8.

    PubMed  PubMed Central  Google Scholar 

  98. Nelson CA, Perez-Chada LM, Creadore A, Li SJ, Lo K, Manjaly P, et al. Patient perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study. JAMA Dermatol. 2020.

Download references

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire M. Felmingham.

Ethics declarations

Conflict of interest

CMF is supported by a Monash University Research Training Program Scholarship. RLM is supported by a National Health and Medical Research Centre Investigator grant APP1194703 and a University of Sydney Robinson Fellowship. VJM is supported by a National Health and Medical Research Centre Early Career Fellowship. NRA, ZG, and MK, have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Author contributions

CMF: conceptualisation, writing original draft. NRA: conceptualisation, reviewing and editing manuscript. ZG: reviewing and editing manuscript. RLM: reviewing and editing manuscript. MJ: conceptualisation, reviewing and editing manuscript. VJM: conceptualisation, reviewing and editing manuscript. All authors approved the final submitted version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felmingham, C.M., Adler, N.R., Ge, Z. et al. The Importance of Incorporating Human Factors in the Design and Implementation of Artificial Intelligence for Skin Cancer Diagnosis in the Real World. Am J Clin Dermatol 22, 233–242 (2021). https://doi.org/10.1007/s40257-020-00574-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-020-00574-4

Navigation