Skip to main content

Advertisement

Log in

Mechanistic Insights into the Catalytic Condensation of Methyl Ketones on MgO Surfaces

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Ketone coupling via aldol condensation is one of the promising routes to produce cyclic and value-added precursors for renewable hydrocarbon biofuels. A first-principles-based microkinetic modeling is performed to evaluate the surface-mediated reaction mechanisms and the role of water molecules in the observed activities for 2-pentanone and 3-pentanone aldol condensation on dehydroxylated MgO(111) surface and hydroxylated terminated surface[OH-MgO(111)]. We have identified the enhancement of the surface OH group to MgO(111) surface catalytic activity by destabilizing the binding strength of reaction intermediates and reducing the energy barriers of rate-determining steps(proton transfer and dehydration steps). The 2-pentanone has one elementary step less in the complete reaction mechanism of aldol condensation and preferable energy barrier for proton transfer and dehydration steps, revealing 2-pentanone as terminal ketone is more reactive than 3-pentanone as central ketone. The water molecules dominated the OH-MgO(111) surface after further addition of water, leading to the reduction of turnover frequency of the aldol condensation dimer product as the loss of aldol condensation reaction intermediates in competitive adsorption with water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huber G. W., Iborra S., Corma A., Chem. Rev., 2006, 106(9), 4044

    Article  CAS  PubMed  Google Scholar 

  2. Gallezot P., Chem. Soc. Rev., 2012, 41(4), 1538

    Article  CAS  PubMed  Google Scholar 

  3. Kundu K., Chatterjee A., Bhattacharyya T., Roy M., Kaur A., Prospects of Alternative Transportation Fuels, Springer, Singapore, 2018, 235

    Book  Google Scholar 

  4. Meng Q., Hou M., Liu H., Song J., Han B., Nat. Commun., 2017, 8(1), 14190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alonso D. M., Bond J. Q., Dumesic J. A., Green Chem., 2010, 12(9), 1493

    Article  CAS  Google Scholar 

  6. Mestres R., Green Chem., 2004, 6(12), 583

    Article  CAS  Google Scholar 

  7. Mäki-Arvela P., Shcherban N., Lozachmeur C., Eränen K., Aho A., Smeds A., Kumar N., Peltonen J., Peurla M., Russo V., Volcho K. P., Murzin D. Y., Catal. Lett., 2019, 149(5), 1383

    Article  Google Scholar 

  8. Ji W., Chen Y., Kung H. H., Appl. Catal. A: Gen., 1997, 161(1), 93

    Article  CAS  Google Scholar 

  9. Huo X., Conklin D. R., Zhou M., Vorotnikov V., Assary R. S., Purdy S. C., Page K., Li Z., Unocic K. A., Balderas R. I., Richards R. M., Vardon D. R., Appl. Catal. B, 2021, 120234

  10. Kikhtyanin O., Kelbichová V., Vitvarová D., Kubů M., Kubička D., Catal Today, 2014, 227, 154

    Article  CAS  Google Scholar 

  11. Lewis J. D., Van de Vyver S., Román-Leshkov Y., Angew. Chem. Int. Ed., 2015, 54(34), 9835

    Article  CAS  Google Scholar 

  12. Subramanian M., Vanangamudi G., Thirunarayanan G., Spectrochim Acta A: Mol. Biomol. Spectrosc., 2013, 110, 116

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues E. G., Keller T. C., Mitchell S., Pérez-Ramírez J., Green Chem., 2014, 16(12), 4870

    Article  CAS  Google Scholar 

  14. Liang G., Wang A., Zhao X., Lei N., Zhang T., Green Chem., 2016, 18(11), 3430

    Article  CAS  Google Scholar 

  15. Young Z. D., Hanspal S., Davis R. J., ACS Catal., 2016, 6(5), 3193

    Article  CAS  Google Scholar 

  16. Luo S., Falconer J. L., J. Catal., 1999, 185(2), 393

    Article  CAS  Google Scholar 

  17. Geng Z., Hideshi H., Kozo T., Bull. Chem. Soc. Jpn., 1989, 626, 2070

    Google Scholar 

  18. Vrbková E., Kovářová T., Vyskočilová E., Červený L., Prog. React. Kinet., 2020, 45, 1468678319825713

    Google Scholar 

  19. Fan D., Dong X., Yu Y., Zhang M., Phys. Chem. Chem. Phys., 2017, 19(37), 25671

    Article  CAS  PubMed  Google Scholar 

  20. Ngo D. T., Tan Q., Wang B., Resasco D. E., ACS Catal., 2019, 9(4), 2831

    Article  CAS  Google Scholar 

  21. Diez V. K., Apesteguía C. R., Di Cosimo J. I., J. Catal., 2006, 240(2), 235

    Article  CAS  Google Scholar 

  22. Alminshid A. H., Abbas M. N., Alalwan H. A., Sultan A. J., Kadhom M. A., Mol. Catal., 2021, 501, 111333

    Article  CAS  Google Scholar 

  23. Kim Y. D., Stultz J., Goodman D. W., J. Phys. Chem. B, 2002, 106(7), 1515

    Article  CAS  Google Scholar 

  24. Ciston J., Subramanian A., Marks L. D., Phys. Rev. B, 2009, 79(8), 085421

    Article  Google Scholar 

  25. Lazarov V., Plass R., Poon H. C., Saldin D., Weinert M., Chambers S., Gajdardziska-Josifovska M., Phys. Rev. B, 2005, 71(11), 115434

    Article  Google Scholar 

  26. Zhang W., Fan D., Yu Y., New J. Chem., 2022, 46(2), 559

    Article  CAS  Google Scholar 

  27. Perrin C. L., Chang K.-L., J. Org. Chem., 2016, 81(13), 5631

    Article  CAS  PubMed  Google Scholar 

  28. Zhang H., Ibrahim M. Y. S., Flaherty D. W., J. Catal., 2018, 361, 290

    Article  Google Scholar 

  29. Baigrie L. M., Cox R. A., Slebocka-Tilk H., Tencer M., Tidwell T. T., J. Am. Chem. Soc., 1985, 107(12), 3640

    Article  CAS  Google Scholar 

  30. Assary R. S., Curtiss L. A., Dumesic J. A., ACS Catal., 2013, 3(12), 2694

    Article  CAS  Google Scholar 

  31. Liu C., Evans T. J., Cheng L., Nimlos M. R., Mukarakate C., Robichaud D. J., Assary R. S., Curtiss L. A., J. Phys. Chem. C, 2015, 119(42), 24025

    Article  CAS  Google Scholar 

  32. Chen S., Yang H., Hu C., Catal. Today, 2015, 245, 100

    Article  CAS  Google Scholar 

  33. Kresse G., Hafner J., Phys. Rev. B, 1994, 49(20), 14251

    Article  CAS  Google Scholar 

  34. Kresse G., Furthmüller J., Comput. Mater. Sci., 1996, 6(1), 15

    Article  CAS  Google Scholar 

  35. Klimeš J., Bowler D. R., Michaelides A., J. Phys.: Condens Matter, 2009, 22(2), 022201

    PubMed  Google Scholar 

  36. Methfessel M., Paxton A. T., Phys. Rev. B, 1989, 40(6), 3616

    Article  CAS  Google Scholar 

  37. Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13(12), 5188

    Article  Google Scholar 

  38. Pack J. D., Monkhorst H. J., Phys. Rev. B, 1977, 16(4), 1748

    Article  Google Scholar 

  39. Henkelman G., Uberuaga B. P., Jónsson H., J. Chem. Phys., 2000, 113(22), 9901

    Article  CAS  Google Scholar 

  40. Henkelman G., Jónsson H., J. Chem. Phys., 1999, 111(15), 7010

    Article  CAS  Google Scholar 

  41. Medford A. J., Shi C., Hoffmann M. J., Lausche A. C., Fitzgibbon S. R., Bligaard T., Nørskov J. K., Catal. Lett., 2015, 145(3), 794

    Article  CAS  Google Scholar 

  42. Campbell C. T., Sellers J. R. V., J. Am. Chem. Soc., 2012, 134(43), 18109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation of China University of Petroleum, Beijing, China(No.2462022YJRC010).

We would like to thank Derek R. VARDON at National Renewable Energy Laboratory of USA for his contributions and helpful discussion. This work was conducted as part of the Computational Chemistry Physics Consortium(CCPC), which is supported by the Bioenergy Technologies Office(BETO) of Energy Efficiency and Renewable Energy(EERE). We also gratefully acknowledge the computing resources provided on “BEBOP”, a computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory of USA(ANL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingxia Zhou or Rajeev S. Assary.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Curtiss, L.A. & Assary, R.S. Mechanistic Insights into the Catalytic Condensation of Methyl Ketones on MgO Surfaces. Chem. Res. Chin. Univ. 39, 1010–1016 (2023). https://doi.org/10.1007/s40242-023-3074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3074-5

Keywords

Navigation