Skip to main content
Log in

Assessing the Adverse Impacts of PM2.5 on Olfactory System Using an Air-liquid Interface Culture Model of Primary Olfactory Epithelial Cells

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The air-liquid interface(ALI) culture is a kind of recently developed system, which has proved its availability in simulating the biology of respiratory tract epithelial tissues. In this study, an ALI-based mouse primary olfactory epithelial cell(OEC) model was established to perform the exposure of PM2.5 (PM=particulate matter) collected from Dianshan Lake(Shanghai) and Wangdu(Hebei). The results showed that PM2.5 in both regions caused a decrease in cell viability in a dose-dependent manner. The 0.5 and 5 µg/cm2(around ambient concentrations) of PM2.5 disrupted OEC membrane integrity and produced oxidative stress with elevated indicators of malondialdehyde(MDA) and reactive oxygen species(ROS). In transcriptomic sequencing, the terms concerning inflammatory cytokines and second messenger cyclic adenosine-3′,5′-monophoshate(cAMP) were enriched in two treatments. The cytokine array showed the levels of some cytokines were altered, although inflammatory responses may not remarkably occur. Meanwhile, PM2.5 disturbed cAMP contents and key genes in the cAMP signaling pathway. The effects of PM2.5 of both regions were largely consistent, while Wangdu samples caused more ROS and Dianshan Lake samples tended to induce inflammatory injury. Thus, with the application of a novel ALI-based in vitro OEC model, our study demonstrated that ambient PM2.5 has the ability to threaten the physiologies and functions of the olfactory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chew S., Lampinen R., Saveleva L., Part Fibre. Toxicol., 2020, 17(1), 18

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Andersson J., Oudin A., Nordin S., Forsberg B., Nordin M., Int. J. Environ. Health Res., 2021, 30, 1

    Google Scholar 

  3. Chen R., Hu B., Liu Y., Biochim. Biophys. Acta, 2016, 1860(12), 2844

    CAS  PubMed  Google Scholar 

  4. Kim B. Y., Park J. Y., Cho K. J., Bae J. H., Am. J. Rhinol. Allergy., 2021, 36(1), 81

    PubMed  Google Scholar 

  5. Qi G. Z., Wang Z. B., Wei L. J., Wang Z. X., Environ. Sci. Pollut. Res., 2022, 29, 77081

    CAS  Google Scholar 

  6. Hammer M. S., van Donkelaar A., Li C., Lyapustin A., Sayer, A. M., Hsu N. C., Levy R. C., Garay M. J., Kalashnikova O. V., Kahn R. A., Brauer M., Apte J. S., Henze D. K., Zhang L., Zhang Q., Ford B., Pierce J. R., Martin R. V., Environ. Sci. Technol., 2020, 54(13), 7879

    CAS  PubMed  Google Scholar 

  7. World Health Organization, WHO Global Air Quality Guidelines, Licence: CC BY-NC-SA 3.0 IGO, Geneva, 2021

  8. Zanobetti A., Dominici F., Wang Y., Schwartz J. D., Environ. Health., 2014, 13(1), 38

    PubMed  PubMed Central  Google Scholar 

  9. Liu F., Huang Y., Zhang F., Chen Q., Wu B., Rui W., Zheng J., C., Ding W., J. Neurochem., 2015, 134(2), 315

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Doty R. L., Ann. Neurol., 2008, 63(1), 7

    PubMed  Google Scholar 

  11. Ailshire J. A., Crimmins E. M., Am. J. Epidemiol., 2014, 180(4), 359

    PubMed  PubMed Central  Google Scholar 

  12. Bhatt D. P., Puig K. L., Gorr M. W., Wold L. E., Combs C. K., PLoS One, 2015, 10(5), e0127102

    PubMed  PubMed Central  Google Scholar 

  13. Kim J., Choi Y., Ahn M., Ekanayake P., Tanaka A., Matsuda H., Shin T., Acta Histochem., 2019, 121(5), 546

    CAS  PubMed  Google Scholar 

  14. Innamorato N. G., Rojo A. I., Garcia-Yague A. J., Yamamoto M., de Ceballos M. L., Cuadrado A., J. Immunol., 2008, 181, 680

    CAS  PubMed  Google Scholar 

  15. Cheng H., Saffari A., Sioutas C., Forman H. J., Morgan T. E., Finch C. E., Environ. Health. Perspect., 2016, 124(10), 1537

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Oberdorster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreylin W., Cox C., Inhale. Toxicol., 2004, 16(6/7), 437

    CAS  Google Scholar 

  17. Calderon-Garciduenas L., Azzarelli B., Acuna H., Garcia R., Gambling T. M., Osnaya N., Monroy S., MR D. E. L. T., Carson J. L., Toxicol. Pathol., 2002, 30, 373

    CAS  PubMed  Google Scholar 

  18. Calderon-Garciduenas L., Mora-Tiscareno A., Ontiveros E., Gomez-Garza G., Barragan-Mejia G., Broadway J., Chapman S., Valencia-Salazar G., Jewells V., Maronpot R. R., Brain Cogn., 2008, 68(2), 117

    PubMed  Google Scholar 

  19. Garcia G. J., Schroeter J. D., Kimbell J. S., Inhal Toxicol., 2015, 27(8), 394

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xian M., Ma S., Wang K., Lou H., Wang Y., Zhang L., Wang C., Akdis C. A., Allergy Asthma Immunol., 2020, 12, 56

    CAS  Google Scholar 

  21. Hu Y., Sheng Y. H., Ji X. L., Liu P., Tang L. M., Chen G., Chen G. L., Pulm Pharmacol Ther., 2020, 63, 101939

    CAS  PubMed  Google Scholar 

  22. Lenz A. G., Stoeger T., Cei D., Schmidmeir M., Semren N., Burgstaller G., Lentner B., Eickelberg O., Meiners S., Schmid O., Am. J. Respir. Cell Mol. Biol., 2014, 51(4), 526

    PubMed  Google Scholar 

  23. Hufnagel M., May N., Wall J., Nanomaterials, 2021, 11(7), 1685

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lynch I., Ahluwalia A., Boraschi D., Byrne H. J., Fadeel B., Gehr P., Bio. Nano Mater., 2013, 14(3/4), 195

    Google Scholar 

  25. Bachler G., Losert S., Umehara Y., von Goetz N., Rodriguez-Lorenzo L., Petri-Fink A., Rothen-Rutishauser B., Hungerbuehler K., Part Fibre Toxicol., 2015, 12, 18

    PubMed  PubMed Central  Google Scholar 

  26. Chortarea S., Barosova H., Clift M. J. D., Wick P., Petri-Fink A., ACS Nano, 2017, 11(8), 7615

    CAS  PubMed  Google Scholar 

  27. Barosova H., Maione A. G., Septiadi D., Sharma M., Haeni L., Balog S., O’Connell O., Jackson G. R., Brown D., Clippinger A. J., Hayden P., Petri-Fink A., Stone V., Rothen-Rutishauser B., ACS Nano, 2020, 14(4), 3941

    CAS  PubMed  Google Scholar 

  28. Shang Y., Chen R., Bai R., Tu J., Tian L., NanoImpact, 2021, 22, 100322

    CAS  PubMed  Google Scholar 

  29. Schroeter J. D., Kimbell J. S., Bonner A. M., Roberts K. C., Andersen M. E., Dorman D. C., Toxicol. Sci., 2006, 90(1), 198

    CAS  PubMed  Google Scholar 

  30. Overton J. H., Kimbell J. S., Miller F. J., Toxicol. Sci., 2001, 64(1), 122

    CAS  PubMed  Google Scholar 

  31. Srinivasan B., Kolli A. R., Esch M. B., Abaci H. E., Shuler M. L., Hickman J. J., J. Lab Autom., 2015, 20(2), 107

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Öhlinger K., Kolesnik T., Meindl C., Toxicol. in Vitro, 2019, 60, 369

    PubMed  Google Scholar 

  33. Buron G., Hacquemand R., Pourié G., Brand G., Neurotoxicology, 2009, 30(1), 114

    CAS  PubMed  Google Scholar 

  34. Sies H., Berndt C., Jones D. P., Annu. Rev. Biochem., 2017, 86, 715

    CAS  PubMed  Google Scholar 

  35. Hong Z., Guo Z., Zhang R., Xu J., Dong W., Zhuang G., J. Exp. Med., 2016, 239(2), 117

    CAS  Google Scholar 

  36. Chen X. Y., Liu S., Zhang W., Wu C. Y., Liu H. C., Zhang F., Lu Z. B., Ding W. J., Biochem. Biophys. Res. Commun., 2018, 505(4), 1154

    CAS  PubMed  Google Scholar 

  37. Yang L., Liu G., Lin Z., Environ Toxicol., 2016, 31(8), 923

    CAS  PubMed  Google Scholar 

  38. Onishi T., Honda A., Tanaka M., Chowdhury P. H., Okano H., Okuda T., Shishido D., Terui Y., Hasegawa S., Kameda T., Tohno S., Hayashi M., Nishita-Hara C., Hara K., Inoue K., Yasuda M., Hirano S., Takano H., Environ. Pollut., 2018, 242, 1693

    CAS  PubMed  Google Scholar 

  39. Moncayo-Nieto O. L., Wilkinson T. S., Brittan M., McHugh B. J., Jones R. O., Conway Morris A., Walker W. S., Davidson D. J., Simpson A. J., BMJ Open Respir. Res., 2014, 11, 000046

    Google Scholar 

  40. Ueha R., Ueha S., Kondo K., Kikuta S., Yamasoba T., Front. Aging Neurosci., 2018, 10, 183

    PubMed  PubMed Central  Google Scholar 

  41. Glezer I., Malnic B., Handb. Clin. Neurol., 2019, 164, 67

    PubMed  Google Scholar 

  42. Zufall F., Munger S. D., Trends in Neuro., 2001, 24(4), 191

    CAS  Google Scholar 

  43. McIntyre J. C., Bose S. C., Stromberg A. J., Chem. Senses., 2008, 33(9), 825

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Munger S. D., Leinders-Zufall T., Zufall F., Annu. Rev. Physiol., 2009, 71, 115

    CAS  PubMed  Google Scholar 

  45. Mercure M. Z., Ginnan R., Singer H. A., Am. J. Physiology-Cell Physiology, 2008, 294(6), C1465

    CAS  Google Scholar 

  46. Fukuoka A., Matsushita K., Morikawa T., Takano H., Yoshimoto T., Clin. Exp. Allergy., 2015, 46, 142

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22076146, 92043302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Xu or Daqiang Yin.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, T., Wei, S. et al. Assessing the Adverse Impacts of PM2.5 on Olfactory System Using an Air-liquid Interface Culture Model of Primary Olfactory Epithelial Cells. Chem. Res. Chin. Univ. 39, 415–424 (2023). https://doi.org/10.1007/s40242-023-3019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3019-z

Keywords

Navigation