Skip to main content
Log in

Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Regulating Lewis acid sites with well-defined electronic state and steric environment is still challenging for achieving high catalytic efficiency. Here we show coordinating zirconium nodes in the typical metal-organic framework known as MOF-545 with the monocarboxylate modulators including trifluoroacetic acid(TFA) or benzoic acid(BA) over meso-tetra(4-carboxyphenyl)-porphine(H2TCPP), denoted as MOF-545-TFA or MOF-545-BA. Impressively, MOF-545-TFA shows the significantly enhanced performance for the catalytic ring-opening reaction of various epoxides with alcohols and good recyclability at 40 °C in respect with MOF-545-BA and ZrO2. This mainly originates from the stronger Lewis acidity and more active zirconium sites induced by the electron-withdrawing TFA, resulting in the increased ability for activation of epoxides. This modulation approach is promising for enlarging the toolbox to extend the MOFs-based Lewis acid catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh R., Mukherjee A., ACS Catal., 2019, 9, 3604

    Article  CAS  Google Scholar 

  2. Jiao L., Wang Y., Jiang H. L., Xu Q., Adv. Mater., 2018, 30, 1703663

    Article  Google Scholar 

  3. Liu Y., Liu B., Zhou Q., Zhang T., Wu W., Chem. Res. Chinese Universities, 2017, 33(6), 971

    Article  CAS  Google Scholar 

  4. He C., Liang J., Zou Y. H., Yi J. D., Huang Y. B., Cao R., Natl. Sci. Rev., 2021, nwab157

    Google Scholar 

  5. Shen Y., Pan T., Wang L., Ren Z., Zhang W., Huo F., Adv. Mater., 2021, 33, 2007442

    Article  CAS  Google Scholar 

  6. Li S. R., Wang L., Chen Y. Z., Jiang H. L., Chem. J. Chinese Universities, 2022, 43(1), 20210575

    Google Scholar 

  7. Ding M., Jiang H. L., CCS Chem., 2020, 3, 2740

    Article  Google Scholar 

  8. Dolgopolova E. A., Brandt A. J., Ejegbavwo O. A., Duke A. S., Maddumapatabandi T. D., Galhenage R. P., Larson B. W., Reid O. G., Ammal S. C., Heyden A., Chandrashekhar M., Stavila V., Chen D. A., Shustova N. B., J. Am. Chem. Soc., 2017, 139, 5201

    Article  CAS  PubMed  Google Scholar 

  9. Ejegbavwo O. A., Berseneva A. A., Martin C. R., Leith G. A., Pandey S., Brandt A. J., Park K. C., Mathur A., Farzandh S., Klepov V. V., Heiser B. J., Chandrashekhar M., Karakalos S. G., Smith M. D., Phillpot S. R., Garashchuk S., Chen D. A., Shustova N. B., Chem. Sci., 2020, 11, 7379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Q., Wang Y., Tang X., Zhang Q., Dai S., Peng H., Lin Y., Tian Z., Lu Z., Chen L., Nano Lett., 2022, 22, 838

    Article  CAS  PubMed  Google Scholar 

  11. Schaate A., Roy P., Godt A., Lippke J., Waltz F., Wiebcke M., Behrens P., Chem. Eur. J., 2011, 17, 6643

    Article  CAS  PubMed  Google Scholar 

  12. Gu Y., Wu Y. N., Li L., Chen W., Li F., Kitagawa S., Angew. Chem. Int. Ed., 2017, 56, 15658

    Article  CAS  Google Scholar 

  13. Wu C. D., Zhao M., Adv. Mater., 2017, 29, 1605446

    Article  Google Scholar 

  14. Sun D., Adiyala P. R., Yim S. J., Kim D. P., Angew. Chem. Int. Ed., 2019, 131, 7483

    Article  Google Scholar 

  15. Feng D., Jiang H. L., Chen Y. P., Gu Z. Y., Wei Z., Zhou H. C., Inorg. Chem., 2013, 52, 12661

    Article  CAS  PubMed  Google Scholar 

  16. Manna K., Zhang T., Carboni M., Abney C. W., Lin W., J. Am. Chem. Soc., 2014, 136, 13182

    Article  CAS  PubMed  Google Scholar 

  17. Cai G., Ding M., Wu Q., Jiang H. L., Natl. Sci. Rev., 2020, 7, 37

    Article  CAS  PubMed  Google Scholar 

  18. Kökçam Demir Ü., Goldman A., Esrafili L., Gharib M., Morsali A., Weingart O., Janiak C., Chem. Soc. Rev., 2020, 49, 2751

    Article  PubMed  Google Scholar 

  19. Lyu J., Zhang X., Li P., Wang X., Buru C. T., Bai P., Guo X., Farha O. K., Chem. Mater., 2019, 31, 4166

    Article  CAS  Google Scholar 

  20. Kore R., Srivastava R., Satpati B., ACS Catal., 2013, 3, 2891

    Article  CAS  Google Scholar 

  21. Prasad R. R. R., Dawson D. M., Cox P. A., Ashbrook S. E., Wright P. A., Clarke M. L., Chem. Eur. J., 2018, 24, 15309

    Article  CAS  PubMed  Google Scholar 

  22. Rojas Buzo S., Bohigues B., Lopes C. W., Meira D. M., Boronat M., Moliner M., Corma A., Chem. Sci., 2021, 12, 10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji P., Feng X., Oliveres P., Li Z., Murakami A., Wang C., Lin W., J. Am. Chem. Soc., 2019, 141, 14878

    Article  CAS  PubMed  Google Scholar 

  24. Feng X., Song Y., Lin W., J. Am. Chem. Soc., 2021, 143, 8184

    Article  CAS  PubMed  Google Scholar 

  25. Vermoortele F., Bueken B., Le Bars G., Van de Voorde B., Vandichel M., Houthoofd K., Vimont A., Daturi M., Waroquier M., Van Speybroeck V., Kirschhock C., De Vos D. E., J. Am. Chem. Soc., 2013, 135, 11465

    Article  CAS  PubMed  Google Scholar 

  26. Jiang J., Gándara F., Zhang Y. B., Na K., Yaghi O. M., Klemperer W. G., J. Am. Chem. Soc., 2014, 136, 12844

    Article  CAS  PubMed  Google Scholar 

  27. Ji P., Drake T., Murakami A., Oliveres P., Skone J. H., Lin W., J. Am. Chem. Soc., 2018, 140, 10553

    Article  CAS  PubMed  Google Scholar 

  28. Quan Y., Song Y., Shi W., Xu Z., Chen J. S., Jiang X., Wang C., Lin W., J. Am. Chem. Soc., 2020, 142, 8602

    Article  CAS  PubMed  Google Scholar 

  29. Henze O., Feast W. J., Gardebien F., Jonkheijm P., Lazzaroni R., Leclère P., Meijer E. W., Schenning A. P. H. J., J. Am. Chem. Soc., 2006, 128, 5923

    Article  CAS  PubMed  Google Scholar 

  30. Kadyrov R., Koenigs R. M., Brinkmann C., Voigtlaender D., Rueping M., Angew. Chem. Int. Ed., 2009, 48, 7556

    Article  CAS  Google Scholar 

  31. Saikia L., Satyarthi J. K., Srinivas D., Ratnasamy P., J. Catal., 2007, 252, 148

    Article  CAS  Google Scholar 

  32. Vilotijevic I., Jamison T. F., Angew. Chem. Int. Ed., 2009, 48, 5250

    Article  CAS  Google Scholar 

  33. Yao C., Dahmen T., Gansäuer A., Norton J., Science, 2019, 364, 764

    Article  CAS  PubMed  Google Scholar 

  34. Das A., Anbu N., Sk M., Dhakshinamoorthy A., Biswas S., ChemCatChem, 2020, 12, 1789

    Article  CAS  Google Scholar 

  35. Xiao J. D., Lu S. M., Jia G. Q., Wang Q. N., Li C., ChemCatChem, 2021, 13, 5236

    Article  CAS  Google Scholar 

  36. Gu J., Sun X., Liu X., Yuan Y., Shan H., Liu Y., Inorg. Chem. Front., 2020, 7, 4517

    Article  CAS  Google Scholar 

  37. Jiang H., Cheng H., Zang C., Tan J., Sun B., Bian F., J. Catal., 2021, 401, 279

    Article  CAS  Google Scholar 

  38. Vermoortele F., Vandichel M., Van de Voorde B., Ameloot R., Waroquier M., Van Speybroeck V., De Vos D. E., Angew. Chem. Int. Ed., 2012, 51, 4887

    Article  CAS  Google Scholar 

  39. Sabyrov K., Jiang J., Yaghi O. M., Somorjai G. A., J. Am. Chem. Soc., 2017, 139, 12382

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y., Klet R. C., Hupp J. T., Farha O., Chem. Commun., 2016, 52, 7806

    Article  CAS  Google Scholar 

  41. Chen X., Lyu Y., Wang Z., Qiao X., Gates B. C., Yang D., ACS Catal., 2020, 10, 2906

    Article  CAS  Google Scholar 

  42. Chai J., Yang S., Lv Y., Chong H., Yu H., Zhu M., Angew. Chem. Int. Ed., 2019, 58, 15671

    Article  CAS  Google Scholar 

  43. Wee L. H., Bonino F., Lamberti C., Bordiga S., Martens J. A., Green Chem., 2014, 16, 1351

    Article  CAS  Google Scholar 

  44. Yu K., Puthiaraj P., Ahn W. S., Appl. Catal. B, 2020, 273, 119059

    Article  CAS  Google Scholar 

  45. Shearer G. C., Chavan S., Bordiga S., Svelle S., Olsbye U., Lillerud K. P., Chem. Mater., 2016, 28, 3749

    Article  CAS  Google Scholar 

  46. Li L., Yang Q., Chen S., Hou X., Liu B., Lu J., Jiang H. L., Chem. Commun., 2017, 53, 10026

    Article  CAS  Google Scholar 

  47. Feng D., Gu Z. Y., Li J. R., Jiang H. L., Wei Z., Zhou H. C., Angew. Chem. Int. Ed., 2012, 51, 10307

    Article  CAS  Google Scholar 

  48. Xu L., Fang G., Yu Y., Ma Y., Ye Z., Li Z., Mol. Catal., 2019, 467, 1

    Article  CAS  Google Scholar 

  49. Liu Y. H., Liu Q. S., Zhang Z. H., J. Mol. Catal. A: Chem., 2008, 296, 42

    Article  CAS  Google Scholar 

  50. Jin L., Qin Q., Dong L., Liu S., Xie S., Lu J., Xu A., Liu J., Liu H., Yao Y., Hou X., Fan M., Chem. Eur. J., 2021, 27, 14947

    Article  CAS  PubMed  Google Scholar 

  51. Lv D. M., Xu Z. N., Peng S. Y., Wang Z. Q., Chen Q. S., Chen Y., Guo G. C., Catal. Sci. Technol., 2015, 5, 3333

    Article  CAS  Google Scholar 

  52. Wang D., Jangjou Y., Liu Y., Sharma M. K., Luo J., Li J., Kamasamudram K., Epling W. S., Appl. Catal. B, 2015, 165, 438

    Article  CAS  Google Scholar 

  53. Lin G., Su Y., Duan X., Xie K., Angew. Chem. Int. Ed., 2021, 60, 9311

    Article  CAS  Google Scholar 

  54. Xu Y. P., Wang Z. Q., Tan H. Z., Jing K. Q., Xu Z. N., Guo G. C., Catal. Sci. Technol., 2020, 10, 1699

    Article  CAS  Google Scholar 

  55. Yu D., Wu M., Hu Q., Wang L., Lv C., Zhang L., J. Hazard. Mater., 2019, 367, 456

    Article  CAS  PubMed  Google Scholar 

  56. Das S., Asefa T., ACS Catal., 2011, 1, 502

    Article  CAS  Google Scholar 

  57. Thiyagarajan S., Gunanathan C., Org Lett., 2019, 21, 9774

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China(Nos.2021YFA1500403 and 2021YFA1200302), the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000), the National Natural Science Foundation of China(Nos.92056204, 21890381, 21721002, 22173024, 21722102 and 51672053), the Beijing Natural Science Foundation, China(No.2182087), and the Youth Innovation Promotion Association of CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoquan Lu or Guodong Li.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

These authors contributed equally to this work.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, H., Yang, C. et al. Coordinating Zirconium Nodes in Metal-Organic Framework with Trifluoroacetic Acid for Enhanced Lewis Acid Catalysis. Chem. Res. Chin. Univ. 38, 1301–1307 (2022). https://doi.org/10.1007/s40242-022-2148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2148-0

Keywords

Navigation