Skip to main content

Advertisement

Log in

Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation: A DFT Study

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Hydrogen is a kind of sustainable clean energy. Sunlight-driven hydrogen evolution reaction(HER) from water splitting assisted by photocatalysts is very crucial for developing clean energy technologies. Single-atom catalysts, such as atomically dispersed Pt on anatase(Pt1/TiO2) have exhibited excellent photocatalytic HER performance. However, the role of a single atom is still elusive. The mechanism of photocatalytic HER of TiO2-supported noble metal single-atom catalysts has been studied. The supported single-atom Pt could narrow the bandgap of TiO2, enhance the optical absorption properties, and promote the transfer of the excited electrons. Excited electrons do not participate in the process of O-H cleavage, but can participate in the process of proton reduction and greatly reduce the hydrogen evolution energy barrier. Therefore, the hydrogen evolution energy can be used as a descriptor to evaluate the activity of TiO2-supported single-atom catalysts. The activity of hydrogen evolution is found to be related to the number of d-band electrons of the single noble atom on M1/TiO2(M=Pd, Pt, Rh, Ir). The increase of the number of d electrons in the single atom could reduce the hydrogen evolution energy and promote the hydrogen evolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner J. A., Science, 1999, 285, 687

    Article  CAS  Google Scholar 

  2. Chen X., Shen S., Guo L., Mao S. S., Chem. Rev., 2010, 110, 6503

    Article  CAS  Google Scholar 

  3. Fujishima A., Honda K., Nature, 1972, 238, 37

    Article  CAS  Google Scholar 

  4. Xing J., Fang W. Q., Zhao H. J., Yang H. G., Chem. Asian J., 2012, 7, 642

    Article  CAS  Google Scholar 

  5. Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science, 2001, 293, 269

    Article  CAS  Google Scholar 

  6. Choi W. Y., Termin A., Hoffmann M. R., J. Chem. Phys., 1994, 98, 13669

    Article  Google Scholar 

  7. Marta I. L., Appl. Catal. B: Environ., 1999, 23, 89

    Article  Google Scholar 

  8. Wu N. L., Lee M. S., Int. J. Hydrogen Energ., 2004, 29, 1601

    Article  CAS  Google Scholar 

  9. John M. R., Furgals A. J., Sammells A. F., J. Phys. Chem., 1983, 87, 801

    Article  Google Scholar 

  10. Sakthivel, Shankar M., Palanichamy M., Arabindoo B., Bahnemann D., Murugesan V., Water Res., 2004, 38, 3001

    Article  CAS  Google Scholar 

  11. Li F. B., Li X. Z., Chemosphere, 2002, 48, 1103

    Article  CAS  Google Scholar 

  12. Cui X., Li W., Ryabchuk P., Junge K., Beller M., Nat. Catal., 2018, 1, 385

    Article  CAS  Google Scholar 

  13. Wang A., Li J., Zhang T., Nat. Rev. Chem., 2018, 2, 65

    Article  CAS  Google Scholar 

  14. Xing J., Chen J. F., Li Y. H., Yuan W. T., Zhou Y., Zheng L. R., Wang H. F., Hu P., Wang Y., Zhao H. J., Wang Y., Yang H. G., Chemistry, 2014, 20, 2138

    Article  CAS  Google Scholar 

  15. Lin L., Zhou W., Gao R., Zhang X., Xu W. Q., Zheng S. J., Jiang Z., Yu Q. L., Li Y.-W., Shi C., Wen X.-D., Ma D., Nature, 2017, 544, 80

    Article  CAS  Google Scholar 

  16. Yao Y., Hu S., Chen W., Huang Z.-Q., Wei W., Yao T., Liu R., Zang K., Wang X., Wu G., Yuan W., Yuan T., Zhu B., Liu W., Li Z., He D., Xue Z., Wang Y., Zheng X., Dong J., Chang C.-R., Chen Y., Hong X., Hong X., Luo J., Wei S., Li W.-X., Strasser P., Wu Y., Li Y., Nat. Catal., 2019, 2, 304

    Article  CAS  Google Scholar 

  17. Sui Y., Liu S., Li T., Liu Q., Jiang T., Guo Y., Luo J., J. Catal., 2017, 353, 250

    Article  CAS  Google Scholar 

  18. Lee B. H., Park S., Kim M., Sinha A. K., Lee S. C., Jung E., Chang W. J., Lee K. S., Kim J. H., Nat. Mater., 2019, 18, 620

    Article  CAS  Google Scholar 

  19. Gao P., Yang L. B., Xiao S. T., Wang L. Y., Gao W., Liu J. H., Materials, 2019, 12, 814

    Article  CAS  Google Scholar 

  20. Umebayashi T., Yamaki T., Itoh H., Asai K., J. Phys. Chem. Solids, 2002, 63, 1909

    Article  CAS  Google Scholar 

  21. Li C., Zhang S., Zhang B., Su D., He S., Zhao Y., Liu J., Wang F., Wei M., Evans D. G., Photo D. X., J. Mater. Chem. A, 2013, 1, 2461

    Article  CAS  Google Scholar 

  22. Coleman H. M., Chiang K., Amal R., Chem. Eng. J., 2005, 113, 65

    Article  CAS  Google Scholar 

  23. Ma S. C., Song W. Y., Liu B., Zhong W. J., Deng J. L., Zheng H. L., Liu J., Gong X. Q., Zhao Z., Appl. Catal. B: Environ., 2016, 198, 1

    Article  CAS  Google Scholar 

  24. Zhang J., Peng C., Wang H.. ACS Catal., 2017, 7, 2374

    Article  CAS  Google Scholar 

  25. Zhao W. N., Liu Z. P., Chem. Sci., 2014, 5, 2256

    Article  CAS  Google Scholar 

  26. Kresse G., Hafner J., Phys. Rev. B, 1993, 47, 558

    Article  CAS  Google Scholar 

  27. Kresse G., Hafner J., Phys. Rev. B, 1994, 49, 14251

    Article  CAS  Google Scholar 

  28. Kresse G., Hafner J., Comput. Mater. Sci., 1996, 6, 15

    Article  CAS  Google Scholar 

  29. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865

    Article  CAS  Google Scholar 

  30. Kresse G., Furthmüller J., Phys. Rev. B, 1996, 54, 11169

    Article  CAS  Google Scholar 

  31. Kresse G., Joubert D., Phys. Rev. B, 1999, 59, 1758

    Article  CAS  Google Scholar 

  32. Henkelman G., Jónsson H., J. Chem. Phys., 2000, 113, 9978

    Article  CAS  Google Scholar 

  33. Henkelman G., Uberuaga B. P., Jónsson H., J. Chem. Phys., 2000, 113, 9901

    Article  CAS  Google Scholar 

  34. Yu Y. Y., Gong X. Q., ACS Catal., 2015, 5, 2042

    Article  CAS  Google Scholar 

  35. Kang T-S., Smith A. P., Taylor B. E., Durstock M.F., Nano. Lett., 2009, 9, 601

    Article  CAS  Google Scholar 

  36. Yin W. J., Krack M., Wen B., Ma S. Y., Liu L. M., J. Phys. Chem. Lett., 2015, 6, 2538

    Article  CAS  Google Scholar 

  37. Jerratsch J. F., Shao X., Nilius N., Freund H. J., Popa C., Ganduglia-Pirovano M. V., Burow A. M., J. Sauer. Phys. Rev. Lett., 2011, 106, 246801

    Article  Google Scholar 

  38. He H., Zapol P., Curtiss L. A., Energy Environ. Sci., 2012, 5, 6196

    Article  CAS  Google Scholar 

  39. Ji Y., Luo Y., J. Phys. Chem. C, 2014, 118, 6359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of the China University of Petroleum, Beijing(No.ZX20200079) and the National Natural Science Foundation of China(No.21503273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyu Song.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Lv, X., Gao, Y. et al. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation: A DFT Study. Chem. Res. Chin. Univ. 38, 1025–1031 (2022). https://doi.org/10.1007/s40242-021-1271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1271-7

Keywords

Navigation