Skip to main content
Log in

Tailoring Pore Structure and Morphologies in Covalent Organic Frameworks for Xe/Kr Capture and Separation

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

As a rising star among porous solid materials, covalent organic frameworks(COFs) with excellent properties including but not limit to facilely controllable structure, high porosity, and multi-chemical functionality represent significant potential for efficient 127Xe/85Kr capture and separation. In this study, through tuning the length of the organic ligands, two-dimensional(2D) COF materials with identical connection group but different pore properties, denoted as ATFG-COF and TpPa-COF with AA-stacking model and TpBD-COF with AB-stacking model were synthesized and tested for Kr and Xe adsorption for the first time. Adsorption measurements indicate that the narrower pore apertures and higher porosity are conducive for COF materials to capture Xe and Kr. Furthermore, the Henry’s constant, isosteric heat of adsorption(Qst), and ideal adsorbed solution theory(IAST) selectivity of ATFG-COF, the pore size of which is closest to the kinetic diameter of the Xe atom(0.41 nm) among 2D COF materials, were carried out based on the single component sorption isotherms. The results illustrate that the high isosteric heat values of Xe/Kr adsorption on ATFG-COF are 25 and 16 kJ/mol at room temperature, respectively. Henry’s law predicts that the selectivity factor of Xe to Kr is 6.07, consistent with the adsorption selectivity(ca. 6) calculated based on the IAST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Häussinger P., Glatthaar R., Rhode W., Kick H., Benkmann C., Weber J., Wunschel H.-J., Stenke V., Leicht E., Stenger H., Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000

  2. Zhang C. J., Zhou X. T., Yang L., IEEE Trans. Magn., 1992, 28, 957

    Article  Google Scholar 

  3. Sanders R. D., Ma D. Q., Maze M., Br. Med. Bull., 2004, 71, 115

    Article  CAS  Google Scholar 

  4. Banerjee D., Simon C. M., Elsaidi S. K., Haranczyk M., Thallapally P. K., Chem., 2018, 4, 466

    Article  CAS  Google Scholar 

  5. Banerjee D., Cairns A. J., Liu J., Motkuri R. K., Nune S. K., Fernandez C. A., Krishna R., Strachan D. M., Thallapally P. K. Acc. Chem. Res., 2015, 48, 211

    Article  CAS  Google Scholar 

  6. Simon C. M., Mercado R., Schnell S. K., Smit B., Haranczyk M., Chem. Mat., 2015, 27, 4459

    Article  CAS  Google Scholar 

  7. Li L., Guo L., Zhang Z., Yang Q., Yang Y., Bao Z., Ren Q., Li J., J. Am. Chem. Soc., 2019, 141, 9358

    Article  Google Scholar 

  8. Mohamed M. H., Elsaidi S. K., Pham T., Forrest K. A., Schaef H. T., Hogan A., Wojtas L., Xu W., Space B., Zaworotko M. J., Thallapally P. K., Angew. Chem. Int. Ed., 2016, 55, 8285

    Article  CAS  Google Scholar 

  9. Banerjee D., Simon C. M., Plonka A. M., Motkuri R. K., Liu J., Chen X., Smit B., Parise J. B., Haranczyk M., Thallapally P. K., Nat. Commun., 2016, 7, 11831

    Article  Google Scholar 

  10. Wang Q., Xiong S., Xiang Z., Peng S., Wang X., Cao D., Sci. China Chem., 2016, 59, 643

    Article  CAS  Google Scholar 

  11. Bunzen H., Kolbe F., Kalytta-Mewes A., Sastre G., Brunner E., Volkmer D., J. Am. Chem. Soc., 2018, 140, 10191

    Article  CAS  Google Scholar 

  12. Xiong S., Gong Y., Hu S., Wu X., Li W., He Y., Chen B., Wang X., J. Mat. Chem. A, 2018, 6, 4752

    Article  CAS  Google Scholar 

  13. Li L., Guo L., Zhang Z., Yang Q., Yang Y., Bao Z., Ren Q., Li J., J. Am. Chem. Soc., 2019, 141, 9358

    Article  Google Scholar 

  14. Wang H., Shi Z., Yang J., Sun T., Rungtaweevoranit B., Lyu H., Zhang Y. B., Yaghi O. M., Angew. Chem. Int. Ed., 2020, 60, 3417

    Article  Google Scholar 

  15. Wang H., Warren M., Jagiello J., Jensen S., Ghose S. K., Tan K., Yu L., Emge T. J., Thonhauser T., Li J., J. Am. Chem. Soc., 2020, 142, 20088

    Article  CAS  Google Scholar 

  16. Wang Q., Ke T., Yang L., Zhang Z., Cui X., Bao Z., Ren Q., Yang Q., Xing H., Angew. Chem. Int. Ed., 2020, 59, 3423

    Article  CAS  Google Scholar 

  17. Chen L., Reiss P. S., Chong S. Y., Holden D., Jelfs K. E., Hasell T., Little M. A., Kewley A., Briggs M. E., Stephenson A., Thomas K. M., Armstrong J. A., Bell J., Busto J., Noel R., Liu J., Strachan D. M., Thallapally P. K., Cooper A. I., Nat. Mater., 2014, 13, 954

    Article  CAS  Google Scholar 

  18. Li J., Huang L., Zou X., Zheng A., Li H., Rong H., Zhu G., J. Mat. Chem. A., 2018, 6, 11163

    Article  CAS  Google Scholar 

  19. Liu J., Strachan D. M., Thallapally P. K., Chem. Commun., 2014, 50, 466

    Article  CAS  Google Scholar 

  20. Wang H., Yao K., Zhang Z., Jagiello J., Gong Q., Han Y., Li J., Chem. Sci., 2014, 5, 620

    Article  CAS  Google Scholar 

  21. Chen X., Plonka A. M., Banerjee D., Krishna R., Schaef H. T., Ghose S., Thallapally P. K., Parise J. B., J. Am. Chem. Soc., 2015, 137, 7007

    Article  CAS  Google Scholar 

  22. Luo S., Ma F., Wang X., Yuan M., Chen L., Qiu S., Tang Q., Wang S. J. Radioanal. Nucl. Ch., 2020, 324, 1275

    Article  CAS  Google Scholar 

  23. Liu R., Tan K. T., Gong Y., Chen Y., Li Z., Xie S., He T., Lu Z., Yang H., Jiang D., Chem. Soc. Rev., 2021, 50, 120

    Article  CAS  Google Scholar 

  24. Waller P. J., Gandara F., Yaghi O. M., Acc. Chem. Res., 2015, 48, 3053

    Article  CAS  Google Scholar 

  25. Ding S. Y., Wang W., Chem. Soc. Rev., 2013, 42, 548

    Article  CAS  Google Scholar 

  26. Xiang Z., Cao D., J. Mater. Chem. A, 2013, 1, 2691

    Article  CAS  Google Scholar 

  27. Li Z., Feng X., Zou Y., Zhang Y., Xia H., Liu X., Mu Y., Chem. Commun., 2014, 50, 13825

    Article  CAS  Google Scholar 

  28. Li Z., Zhi Y., Feng X., Ding X., Zou Y., Liu X., Mu Y., Chem, 2015, 21, 12079

    Article  CAS  Google Scholar 

  29. Karak S., Kumar S., Pachfule P., Banerjee R., J. Am. Chem. Soc., 2018, 140, 5138

    Article  CAS  Google Scholar 

  30. Stegbauer L., Hahn M. W., Jentys A., Savasci G., Ochsenfeld C., Lercher J. A., Lotsch B. V., Chem. Mat., 2015, 27, 7874

    Article  CAS  Google Scholar 

  31. Kandambeth S., Mallick A., Lukose B., Mane M. V., Heine T., Banerjee R., J. Am. Chem. Soc., 2012, 134, 19524

    Article  CAS  Google Scholar 

  32. Biswal B. P., Chandra S., Kandambeth S., Lukose B., Heine T., Banerjee R., J. Am. Chem. Soc., 2013, 135, 5328

    Article  CAS  Google Scholar 

  33. Li Z., Feng X., Zou Y., Zhang Y., Xia H., Liu X., Mu Y., Chem. Commun., 2014, 50, 13825

    Article  CAS  Google Scholar 

  34. Daugherty M. C., Vitaku E., Li R. L., Evans A. M., Chavez A. D., Dichtel W. R., Chem. Commun., 2019, 55, 2680

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Nos.21906112, 21790374).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuyin Ma or Shuao Wang.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Information (ESI)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Wang, X., Chen, L. et al. Tailoring Pore Structure and Morphologies in Covalent Organic Frameworks for Xe/Kr Capture and Separation. Chem. Res. Chin. Univ. 37, 679–685 (2021). https://doi.org/10.1007/s40242-021-1064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1064-z

Keywords

Navigation