Skip to main content
Log in

Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

DNA nanotechnology enables precise organization of nanoscale objects with extraordinarily structural programmability. Self-assembled DNA nanostructures possess a lot of interesting features, such as designable size and shape, and structural addressability at nanometer scale. Taking advantage of these properties, DNA nanostructures could work as templates or molds for the controllable synthesis of functional nanomaterials, such as organic macromolecules, metallic or inorganic nonmetallic nanomaterials. In this review, we summarize the recent progress in the shape-controllable synthesis of functional nanomaterials on DNA templates. The potential application fields of these nanomaterials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu J. F., Geng Y. L., Elisabeth P., Shailendra G., Ashton J. R., John N. Harb., Adam T. W., ACS Nano, 2011, 5(3), 2240

    Article  CAS  PubMed  Google Scholar 

  2. Cui Y., Lauhon L. J., Gudiksen M. S., Wang J., Lieber C. M., Appl. Phys. Lett., 2001, 78(15), 2214

    Article  CAS  Google Scholar 

  3. Park W. I., Zheng G., Jiang X., Tian B., Lieber C. M., Nano lett., 2008, 8(9), 3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui Q. H., Zhao Y. S., Yao J., Adv. Mater, 2014, 26(40), 6852

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Y. S., Wu J., Huang J., J. Am. Chem. Soc., 2009, 131(9), 3158

    Article  CAS  PubMed  Google Scholar 

  6. Liu N., Liedl T., Chem. Rev., 2018, 118(6), 3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu J., Bu W., Zhang S., Chen F., Xing H., Pan L., Zhou L., Peng W., Shi J., Chem.: Eur. J., 2012, 18(8), 2335

    Article  CAS  Google Scholar 

  8. Zhou C., Xin L., Duan X. Y., Urban M., Liu N., Nano Lett., 2018, 18(11), 7395

    Article  CAS  PubMed  Google Scholar 

  9. Palmer R. E., Pratontep S., Boyen H. G., Nat. Mater., 2003, 2(7), 443

    Article  CAS  PubMed  Google Scholar 

  10. Pompa P. P., Martiradonna L., Torre A. D., Sala F. D., Manna L., Vittorio M. D., Calabi F., Cingolani R., Rinaldi R., Nat. Nanotech., 2006, 1(2), 126

    Article  CAS  Google Scholar 

  11. Koh A. L., Fernández-Domínguez A. I., McComb D. W., Maier S. A., Yang J. K., Microsc. Microana., 2011, 17(S2), 764

    Article  Google Scholar 

  12. Zanchet D., Micheel C. M., Parak W. J., Gerion D., Alivisatos A. P, Nano Lett., 2001, 1(1), 32

    Article  CAS  Google Scholar 

  13. Dittmer W. U., Simmel F. C., Appl. Phys. Lett., 2004, 85(4), 633

    Article  CAS  Google Scholar 

  14. Chen Y. J., Benjamin G., Muscat R. A., Georg S., Nat. Nanotech., 2015, 10(9), 748

    Article  CAS  Google Scholar 

  15. Kallenbach N. R., Ma R. I., Seeman N. C., Nature, 1983, 305(5937), 829

    Article  CAS  Google Scholar 

  16. Seeman N. C., J. Theor. Bio., 1982, 99(2), 237

    Article  CAS  Google Scholar 

  17. Winfree E., Liu F., Wenzler L. A., Seeman N. C., Nature, 1998, 394(6693), 539

    Article  CAS  PubMed  Google Scholar 

  18. Rothemund P. W., Nature, 2006, 440(7082), 297

    CAS  PubMed  Google Scholar 

  19. Liu W., Zhong H., Wang R., Seeman N. C., Angew. Chem. Int. Ed., 2011, 50(1), 264

    Article  CAS  Google Scholar 

  20. Douglas S. M., Marblestone A. H., Teerapittayanon S., Vazquez A., Church G. M., Shih W. M., Nucleic. Acids. Res., 2009, 37(15), 5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuzuya A., Komiyama M., Chem. Commun., 2009, (28), 4182

  22. Zhao Z., Yan H., Liu Y., Angew. Chem. Int. Edit., 2010, 49(8), 1414

    Article  CAS  Google Scholar 

  23. Pei H., Zuo X., Zhu D., Huang Q., Fan C. H., Accounts Chem. Res., 2013, 47(2), 550

    Article  CAS  Google Scholar 

  24. Schnitzler T., Herrmann A., Accounts Chem. Res., 2012, 45(9), 1419

    Article  CAS  Google Scholar 

  25. Liang H., Zhang X. B., Lv Y. H., Gong L., Wang R. W., Zhu X. Y., Yang R. H., Tan W. H., Accounts Chem. Res., 2014, 47(6), 1891

    Article  CAS  Google Scholar 

  26. Mao X., Chen G., Wang Z., Zhang Y., Zhu X., Li G., Chem. Sci., 2018, 9(4), 811

    Article  CAS  PubMed  Google Scholar 

  27. Lu Y., Liu J., Curr. Opin. Biotech., 2006, 17(6), 580

    Article  CAS  PubMed  Google Scholar 

  28. Kim B. S., Lee S. W., Yoon H., Strano M. S., Yang S. H., Hammond P. T., Chem. Mater., 2010, 22(16), 4791

    Article  CAS  Google Scholar 

  29. Li D., Huang J. X., Kaner R. B., Acc. Chem. Res., 2009, 42(1), 135

    Article  CAS  PubMed  Google Scholar 

  30. Kane-Maguire L. A. P., Wallace G. G., Chem. Soc. Rev., 2010, 39(7), 2545

    Article  CAS  PubMed  Google Scholar 

  31. Wei Z., Faul C. F. J., Macromol. Rapid. Comm., 2010, 29(4), 280

    Article  CAS  Google Scholar 

  32. Ma Y. F., Zhang J., Zhang G., He H., J. Am. Chem. Soc., 2004, 126(22), 7097

    Article  CAS  PubMed  Google Scholar 

  33. Xu P., Singh A., Kaplan D. L., Adv. Polym. Sci., 2005, 194(1), 69

    Google Scholar 

  34. Lin H. K., Chen S. A., Macromolecules, 2000, 33(22), 8117

    Article  CAS  Google Scholar 

  35. Bae W. J., Kim K. H., Park Y. H., Jo W. H., Chem. Commun., 2003, 22(22), 2768

    Article  CAS  Google Scholar 

  36. Li W. G., McCarthy P. A., Liu D. G., Huang J. Y., Wang H. L., Macromolecules, 2002, 35(27), 9975

    Article  CAS  Google Scholar 

  37. Wang W., Lu X., Li Z., Lei J., Wang C., Adv. Mater., 2011, 23(43), 5109

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z. G., Zhan P. F., Ding B. Q., ACS Nano, 2013, 7(2), 1591

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z. G., Liu Q., Ding B. Q., Chem. Mater., 2014, 26(11), 3364

    Article  CAS  Google Scholar 

  40. Lee H., Dellatore S. M., Miller W. M., Messersmith P. B., Science, 2007, 318(5849), 426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tokura Y., Harvey S., Chen C., Wu Y., Ng D. Y. W., Weil T., Angew. Chem. Int. Ed., 2018, 57, 1587

    Article  CAS  Google Scholar 

  42. Tokura Y., Harvey S., Xu X., Chen C., Morsbach S., Wunderlich K., Fytas G., Wu Y., Ng. D. Y. W., Weil, T., Chem. Commun., 2018, 54, 2808

    Article  CAS  Google Scholar 

  43. Zhou C., Yang Y. R., Dong Y. C., Wu F., Wang D. M., Xin L., Liu D. S., Adv. Mater., 2016, 28, 9819

    Article  CAS  PubMed  Google Scholar 

  44. Dong Y. C., Yang Y. R., Zhang Y. Y., Wang D. M., Wei X. X., Banerjee S., Liu Y., Yang Z. Q., Yan H., Liu D. S., Angew. Chem. Int. Ed., 2017, 56, 1586

    Article  CAS  Google Scholar 

  45. Zhang Z., Yang Y., Pincet F., Llaguno M. C., Lin C. X., Nat. Chem., 2017, 9(7), 653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perrault S. T., Shih W. M., ACS Nano, 2014, 8(5), 5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao Z., Zhang M., Hogle J. M., Shih W. M., Wagner G., Nasr M. L., J. Am. Chem. Soc., 2018, 140, 10639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang Y., Wang J., Shigematsu H., Xu W. M., Shih W. M., Rothman J. E., Lin C. X., Nature Chemistry, 2016, 8(5), 476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burley G. A., Gierlich J., Mofid M. R., Nir H., Tal S., Eichen Y., Carell T., J. Am. Chem. Soc., 2006, 128(5), 1398

    Article  CAS  PubMed  Google Scholar 

  50. Richter J., Seidel R., Kirsch R., Mertig M., Pompe W., Plaschke J., Schackert H. K., Adv. Mater., 2010, 12(7), 507

    Article  Google Scholar 

  51. Ford W. E., Harnack O., Yasuda A., Wessels J. M., Adv. Mater., 2010, 13(23), 1793

    Article  Google Scholar 

  52. Park S. H., Prior M. W., LaBean T. H., Finkelstein G., Appl. Phys. Lett., 2006, 89(3), 033901

    Article  CAS  Google Scholar 

  53. Liu D., Park S. H., Reif J. H., LaBean T. H., Proc. Natl. Acad. Sci. USA, 2004, 101(3), 717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Braun E., Eichen Y., Sivan U., Ben-Yoseph G., Nature, 1998, 391(6669), 775

    Article  CAS  PubMed  Google Scholar 

  55. Fischler M., Simon U., Nir H., Eichen Y., Burley G. A., Gierlich J., Small, 2007, 3(6), 1049

    Article  CAS  PubMed  Google Scholar 

  56. Mbindyo J. K. N., Reiss B. D., Martin B. R., Keating C. D., Natan M. J., Mallouk T. E., Adv. Mater., 2001, 13(4), 249

    Article  CAS  Google Scholar 

  57. Patolsky F., Weizmann Y., Lioubashevski O., Willner I., Angew. Chem. Int. Ed., 2002, 41(13), 2323

    Article  CAS  Google Scholar 

  58. Nguyen K., Monteverde M., Filoramo A., Bourgoin J. P., Adv. Mater., 2008, 20(6), 1099

    Article  CAS  Google Scholar 

  59. Antipina M. N., Gainutdinov R. V., Rachnyanskaya A. A., Tolstikhina A. L., Yurova T. V., Khomutov G. B., Surf. Sci., 2003, 532(3), 1025

    Article  CAS  Google Scholar 

  60. Suchetan P., Reji V., Deng Z. T., Zhao Z., Ashok K., Yan H., Liu Y., Angew. Chem. Int. Ed., 2011, 50(18), 4176

    Article  CAS  Google Scholar 

  61. Wang Z. G., Liu Q., Li N., Ding B. Q., Chem. Mater., 2016, 28(23), 8834

    Article  CAS  Google Scholar 

  62. Schreiber R., Kempter S., Holler S., Schüller V., Schiffels D., Simmel S. S., Nickels P. C., Liedl T., Small, 2011, 7(13), 1795

    Article  CAS  PubMed  Google Scholar 

  63. Sun W., Boulais E., Hakobyan Y., Wang W. L., Guan A., Bathe M., Yin P., Science, 2014, 346(6210), 1258361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Helmi S., Ziegler C., Kauert D. J., Seidel R., Nano Lett., 2014, 14(11), 6693

    Article  CAS  PubMed  Google Scholar 

  65. Li N., Shang Y. X., Xu R., Jiang Q., Liu J. B., Wang L., Cheng Z. H., Ding B. Q., J. Am. Chem. Soc., 2019, 141, 17968

    Article  CAS  PubMed  Google Scholar 

  66. Liu B., Cao Y. Y., Che S. A., Angew. Chem. Int. Ed., 2013, 52(52), 14186

    Article  CAS  Google Scholar 

  67. Jin C., Han L., Che S., Angew. Chem. Int. Ed., 2009, 48(49), 9268

    Article  CAS  Google Scholar 

  68. Liu B., Han L., Che S., Angew. Chem. Int. Ed., 2012, 51(4), 923

    Article  CAS  Google Scholar 

  69. Cao Y., Kao K., Mou C., Han L., Che S., Angew. Chem. Int. Ed., 2016, 55, 2037

    Article  CAS  Google Scholar 

  70. Liu X., Zhang F., Jing X., Pan M., Liu P., Li W., Zhu B., Li J., Chen H., Wang L., Lin J., Liu Y., Zhao D., Yan H., Fan C. H., Nature, 2018, 559(7715), 593

    Article  CAS  PubMed  Google Scholar 

  71. Nguyen L., Döblinger M., Liedl T., Heuer-Jungemann A., Angew. Chem. Int. Ed., 2018, 58(3), 912

    Article  CAS  Google Scholar 

  72. Auyeung E., Macfarlane R. J., Choi C. H. J., Cutler J. I., Mirkin C. A., Adv. Mater., 2012, 24(38), 5181

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyin Yu, Na Li or Baoquan Ding.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21573051, 21773044, 21371008 and 51761145044), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.21721002), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences(No.QYZDB-SSW-SLH029), the K. C. Wong Education Foundation(No.GJTD-2018-03) and the Project of the Beijing Municipal Science & Technology Commission, China (No.Z191100004819008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Shang, Y., Yu, H. et al. Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates. Chem. Res. Chin. Univ. 36, 171–176 (2020). https://doi.org/10.1007/s40242-020-9035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-9035-3

Keywords

Navigation