Skip to main content
Log in

Organic Nanocrystals Based on a Solid-emission-tunable AIEgen for Cell Imaging

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The development of fluorescent nanocrystals based on organic small molecules is of great importance in bioimaging due to the merits of easy modification, high brightness and excellent photostability, however suffering from the emission-detrimental aggregation-caused quenching(ACQ) effect. Herein, we successfully designed and synthesized an AIE-active di(N, N-dimethylaniline)-dibenzofulvene(named as NFTPE), which exhibits the crystallization-induced emission enhancement(CIEE) effect. Interestingly, two types of yellow- and orange-emissive crystals for NFTPE were obtained, exhibiting aggregation microenvironment-dependent emission tuning in the solid state. Single-crystal analysis and density functional theory(DFT) calculations reveal that different aggregation microenvironments result in the distinct molecular conformation for various emission. Excitingly, the crystallization of NFTPE in an aqueous solution under the assistance of amphiphilic PEG polymer matrices could be monitored in situ by the fluorescence changes, facilitating the preparation of NFTPE nanocrystals(NFTPE-NCs) by adjusting the aggregation microenvironment. The obtained NFTPE-NCs exhibit the superior performance in cell imaging in respect to high brightness, photostability, and biocompatibility, thus demonstrating the potential in bioimaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong Y. N., Lam J. W. Y., Tang B. Z., Chem. Commun., 2009, (29), 4332

  2. Kwok R. T. K., Leung C. W. T., Lam J. W. Y., Tang B. Z., Chem. Soc. Rev., 2015, 44(13), 4228

    Article  CAS  Google Scholar 

  3. Feng G. X., Kwok R. T. K., Tang B. Z., Liu B., Appl. Phys. Rev., 2017, 4(2), 021307

    Article  Google Scholar 

  4. Zhao W. J., Cheung T. S., Jiang N., Huang W. B., Lam J. W. Y., Zhang X. P., He Z. K., Tang B. Z., Nat. Commun., 2019, 10, 1595

    Article  Google Scholar 

  5. Xu S. D., Duan Y. K., Liu B., Adv. Mater., 2020, 32(1), 1903530

    Article  CAS  Google Scholar 

  6. Zhou C. C., Xu W. H., Zhang P. B., Jiang M. J., Chen Y. C., Kwok R. T. K., Lee M. M. S., Shan G. G., Qi R. L., Zhou X., Lam J. W. Y., Wang S., Tang B. Z., Adv. Funct. Mater., 2019, 29(4), 1805986

    Article  Google Scholar 

  7. Kenry., Chen C. J., Liu B., Nat. Commun., 2019, 10, 2111

    Article  CAS  Google Scholar 

  8. Gao M., Tang B. Z., Coord. Chem. Rev., 2020, 402, 213076

    Article  CAS  Google Scholar 

  9. Shao A. D., Xie Y. S., Zhu S. J., Guo Z. Q., Zhu S. Q., Guo J., Shi P., James T. D., Tian H., Zhu W. H., Angew. Chem. Int. Ed., 2015, 54(25), 7275

    Article  CAS  Google Scholar 

  10. Gu X. G., Kwok R. T. K., Lam J. W. Y., Tang B. Z., Biomaterials, 2017, 146, 115

    Article  CAS  Google Scholar 

  11. Alvarado S. R., Guo Y. J., Ruberu T. P. A., Tavasoli E., Vela J., Coord. Chem. Rev., 2014, 263, 182

    Article  Google Scholar 

  12. Pinaud F., Clarke S., Sittner A., Dahan M., Nat. Methods, 2010, 7(4), 275

    Article  CAS  Google Scholar 

  13. Bae S. W., Tan W. H., Hong J. I., Chem. Commun., 2012, 48(17), 2270

    Article  CAS  Google Scholar 

  14. Shur J. W., Yoon D. H., Cryst. Res. Technol., 2004, 39(12), 1099

    Article  CAS  Google Scholar 

  15. Zhang Y., Zou Y. X., Liu F., Xu Y. T., Wang X. W., Li Y. J., Liang H., Chen L., Chen Z., Tan W. H., Anal. Chem., 2016, 88(21), 10611

    Article  CAS  Google Scholar 

  16. Liu B. W., Liu J. W., Langmuir, 2015, 31(1), 371

    Article  CAS  Google Scholar 

  17. Wang F., Banerjee D., Liu Y. S., Chen X. Y., Liu X. G., Analyst, 2010, 135(8), 1839

    Article  CAS  Google Scholar 

  18. Fery-Forgues S., Nanoscale, 2013, 5(18), 8428

    Article  CAS  Google Scholar 

  19. Luo J. D., Xie L., Lam J. W. Y., Cheng L., Chen H. Y., Qiu C. F., Kwok H. S., Zhan X. W., Liu Y. Q., Zhu D. B., Tang B. Z., Chem. Commun., 2001, (18), 1740

  20. Qian J., Tang B. Z., Chem, 2017, 3(1), 56

    Article  CAS  Google Scholar 

  21. Wang H., Zhao E. G., Lam J. W. Y., Tang B. Z., Materials Today, 2015, 18(7), 365

    Article  CAS  Google Scholar 

  22. Li Q. Q., Li Z., Sci. China Chem., 2015, 58(12), 1800

    Article  CAS  Google Scholar 

  23. Mei J., Leung N. L. C., Kwok R. T. K., Lam J. W., Tang B. Z., Chem. Rev., 2015, 115(21), 11718

    Article  CAS  Google Scholar 

  24. Gu X. G., Zhang X. Y., Ma H. L., Jia S. R., Zhang P. F., Zhao Y. J., Liu Q., Wang J. G., Zheng X. Y., Lam J. W. Y., Ding D., Tang B. Z., Adv. Mater., 2018, 30(26), 1801065

    Article  Google Scholar 

  25. Yang S. J., Yin P.-A., Li L., Peng Q., Gu X. G., Gao G., You J. S., Tang B. Z., Angew. Chem. Int. Ed., 2020, 59(25), 10136

    Article  CAS  Google Scholar 

  26. Zheng Z., Li D. Y., Liu, Z., Peng H. Q., Sung H. H. Y., Kwok R. T. K., Williams I. D., Lam J. W. Y., Qian J., Tang B. Z., Adv. Mater., 2019, 31(44), 1904799

    Article  CAS  Google Scholar 

  27. Wang S. W., Liu J., Goh C. C., Ng L. G., Liu B., Adv. Mater., 2019, 31(44), 1904447

    Article  CAS  Google Scholar 

  28. Ni X., Zhang X. Y., Duan X. C., Zheng H.-L., Xue X.-S., Ding D., Nano Lett. 2019, 19(1), 318

    Article  CAS  Google Scholar 

  29. Nicol A., Kwok R. T. K., Chen C. C., Zhao W. J., Chen M., Qu J. N., Tang B. Z., J. Am. Chem. Soc., 2017, 139(41), 14792

    Article  CAS  Google Scholar 

  30. Chen C., Ni X., Jia S. R., Liang Y., Wu X. L., Kong D. L., Ding D., Adv. Mater., 2019, 31(52), 1904914

    Article  CAS  Google Scholar 

  31. Fateminia S. M. A., Wang Z. M., Goh C. C., Manghnani P. N., Wu W. B., Mao D., Ng L. G., Zhao Z. J., Tang B. Z., Liu B., Adv. Mater., 2016, 29(1), 1604100

    Article  Google Scholar 

  32. Chen C., Ou H. L., Liu R. H., Ding D., Adv. Mater., 2020, 32(3), 1806331

    Article  CAS  Google Scholar 

  33. Chen C., Ni X., Tian H.-W., Liu Q., Guo D.-S., Ding D., Angew. Chem. Int. Ed., 2020, 59(25), 10008

    Article  CAS  Google Scholar 

  34. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Haseg-awa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochter-ski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009

  35. Gu X. G., Yao J. J., Zhang G. X., Yan Y. L., Zhang C., Peng Q., Liao Q., Wu Y. S., Xu Z. Z., Zhao Y. S., Fu H. B., Zhang D. Q., Adv. Funct. Mater., 2012, 22(23), 4862

    Article  CAS  Google Scholar 

  36. Kang M. M., Kwok R. T. K., Wang J. G., Zhang H., Lam J. W. Y., Li Y., Zhang P. F., Zou H., Gu X. G., Li F., Tang B. Z., J. Mater. Chem. B, 2018, 6(23), 3894

    Article  CAS  Google Scholar 

  37. Zhang P. F., Jiang T., Li Y. Y., Zhao Z., Gong P., Cai L. T., Kwok R. T. K., Lam J. W. Y., Gu X. G., Tang B. Z., Chem. Asian J., 2019, 14(6), 770

    Article  CAS  Google Scholar 

  38. Gu X. G., Yao J. J., Zhang G. X., Zhang D. Q., Small, 2012, 8(22), 3406

    Article  CAS  Google Scholar 

  39. Senn H. M., Thiel W., Angew. Chem. Int. Ed., 2009, 48(7), 1198

    Article  CAS  Google Scholar 

  40. Wang H., Gu X. G., Hu R. R., Lam J. W. Y., Zhang D. Q., Tang B. Z., Chem. Sci., 2016, 7(9), 5692

    Article  CAS  Google Scholar 

  41. Wang L., Xia Q., Liu R. Y., Qu J. Q., J. Mater. Chem. B, 2018, 6(15), 2340

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China(Nos.21702016, 21905015 and 52003023), and the Fund of the Beijing National Laboratory for Molecular Sciences, China(No.BNLMS201813). B. Z. Tang acknowledges the financial support from the National Natural Science Foundation of China(No.21788102), the Research Grants Council of Hong Kong(Nos. N_HKUT609/19, 16305518, and C6009-17G), and the Innovation and Technology Commission(No.ITC-CNERC14SC01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Zhang, Xinggui Gu or Ben Zhong Tang.

Additional information

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Guo, L., Yu, H. et al. Organic Nanocrystals Based on a Solid-emission-tunable AIEgen for Cell Imaging. Chem. Res. Chin. Univ. 37, 129–136 (2021). https://doi.org/10.1007/s40242-020-0346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0346-1

Keywords

Navigation