Skip to main content
Log in

Synthesis of Prebiotic Building Blocks by Photochemistry

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Ultraviolet(UV) light is a very competent energy source for the synthesis of prebiotic building blocks on early Earth. In aqueous solution, hydrated electron is produced by irradiating ferrocyanide/cuprous cyanide/hydrosulfide by 254 nm UV light. Hydrated electron is a powerful reducing reagent driving the formation of prebiotic building blocks under prebiotically plausible conditions. Here we summarize the photoredox synthesis of prebiotic related building blocks from hydrogen cyanide(HCN) and other prebiotically related molecules. These results indicate biological related building blocks can be generated on the surface of early Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rimmer P. B., Xu J., Thompson S. J., Gillen E., Sutherland J. D., Queloz D., Science Advances, 2018, 4, eaar3302

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sasselov D. D., Grotzinger J. P., Sutherland J. D., Science Advances, 2020, 6, eaax3419

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller S. L., Science, 1953, 117, 528

    CAS  PubMed  Google Scholar 

  4. Oró J., Kimball A. P., Archives of Biochemistry and Biophysics, 1962, 94, 217

    Google Scholar 

  5. Butlerow A., CR Acad. Sci., 1861, 53, 145

    Google Scholar 

  6. Ruiz-Mirazo K., Briones C., de la Escosura A., Chemical Reviews, 2014, 114, 285

    CAS  PubMed  Google Scholar 

  7. Liu Z., Mariani A., Wu L., Ritson D., Folli A., Murphy D., Sutherland J., Chemical Science, 2018, 9, 7053

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu J., Chmela V., Green N. J., Russell D. A., Janicki M. J., Góra R. W., Szabla R., Bond A. D., Sutherland J. D., Nature, 2020, 582, 60

    CAS  PubMed  Google Scholar 

  9. Liu Z., Wu L. F., Bond A. D., Sutherland J. D., Chemical Communication, 2020, https://doi.org/10.1039/D0CC05752E

  10. Ritson D., Sutherland J. D., Nature Chemistry, 2012, 4, 895

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abou M. N., Ajram G., Rossi J. C., Boiteau L., Duvernay F., Pascal R., Danger G., Chemistry: A European Journal, 2017, 23, 7418

    Google Scholar 

  12. Luther G. W., Theberge S. M., Rozan T. F., Rickard D., Rowlands C. C., Oldroyd A., Environmental Science & Technology, 2002, 36, 394

    CAS  Google Scholar 

  13. Wirth T., Über Thioformamid und Kohlenmonosufid., ETH Zurich, Zurich, 1910

    Google Scholar 

  14. Ritson D. J., Sutherland J. D., Angewandte Chemie International Edition, 2013, 52, 5845

    CAS  PubMed  Google Scholar 

  15. Reynolds J. E., Journal of the Chemical Society, 1869, 22, 1

    Google Scholar 

  16. Lohrmann R., Orgel L. E., Science, 1968, 767, 64

    Google Scholar 

  17. Ritson D. J., Sutherland J. D., Journal of Molecular Evolution, 2014, 78, 245

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Strecker A., Justus Liebigs Annalen der Chemie, 1854, 91, 349

    Google Scholar 

  19. Patel B. H., Percivalle C., Ritson D. J., Duffy C. D., Sutherland J. D., Nature Chemistry, 2015, 7, 301

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Keefe A. D., Miller S. L., Origins of Life and Evolution of the Biosphere, 1996, 26, 111

    CAS  PubMed  Google Scholar 

  21. Shirom M., Stein G., The Journal of Chemical Physics, 1971, 55, 3372

    CAS  Google Scholar 

  22. Marion G. M., Kargel J. S., Crowley J. K. Catling D. C., Icarus, 2013, 225, 342

    CAS  Google Scholar 

  23. Halevy I., Zuber M. T., Schrag D. P., Science, 2007, 318, 1903

    CAS  PubMed  Google Scholar 

  24. Kaltenegger L., Sasselov D. D., The Astrophysical Journal, 2010, 708, 1162

    CAS  Google Scholar 

  25. Xu J., Ritson D. J., Ranjan S., Todd Z. R., Sasselov D. D., Sutherland J. D., Chemical Communications, 2018, 54, 5566

    CAS  PubMed  Google Scholar 

  26. Powner M. W., Gerland B., Sutherland J. D., Nature, 2009, 459, 239

    CAS  PubMed  Google Scholar 

  27. Steinman G., Lemmon R. M., Calvin M., Science, 1965, 147, 1574

    CAS  PubMed  Google Scholar 

  28. Toner J. D., Catling D. C., Geochimica et Cosmochimica Acta, 2019, 260, 124

    CAS  Google Scholar 

  29. Li L., Prywes N., Tam C. P., O’Flaherty D. K., Lelyveld V. S., Izgu E. C., Pal A., Szostak J. W., Journal of the American Chemical Society, 2017, 139, 1810

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Walton T., Zhang W., Li L., Tam C. P., Szostak J. W., Angewandte Chemie International Edition, 2019, 131, 10926

    Google Scholar 

  31. Becker S., Thoma I., Deutsch A., Gehrke T., Mayer P., Zipse H., Carell T., Science, 2016, 352, 833

    CAS  PubMed  Google Scholar 

  32. Kim H. J., Kim J., Astrobiology, 2019, 19, 669

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Becker S., Feldmann J., Wiedemann S., Okamura H., Schneider C., Iwan K., Crisp A., Rossa M., Amatov T., Carell T., Science, 2019, 366, 76

    CAS  PubMed  Google Scholar 

  34. Hein J. E., Tse E., Blackmond D. G., Nature Chemistry, 2011, 3, 704

    CAS  PubMed  Google Scholar 

  35. Xu J., Tsanakopoulou M., Magnani C. J., Szabla R., Sponer J. E., Sponer J., Gora R. W., Sutherland J. D., Nature Chemistry, 2017, 9, 303

    CAS  PubMed  Google Scholar 

  36. Xu J., Green N. J., Gibard C., Krishnamurthy R., Sutherland J. D., Nature Chemistry, 2019, 11, 457

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Z., Rossi J.-C., Pascal R., Life, 2019, 9, 26

    PubMed Central  Google Scholar 

  38. Pasek M. A., Lauretta D. S., Astrobiology, 2005, 5, 515

    CAS  PubMed  Google Scholar 

  39. Bryant D. E., Kee T. P., Chemcal Communications, 2006, 22, 2344

    Google Scholar 

  40. Gulick A., American Scientist, 1955, 43, 479

    CAS  Google Scholar 

  41. Gulick A., Annals of the New York Academy of Sciences, 1957, 69, 309

    CAS  PubMed  Google Scholar 

  42. Ritson D. J., Mojzsis S. J., Sutherland J. D., Nature Geoscience, 2020, 13, 344

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ritson D. J., Xu J., Sutherland J. D., Synlett, 2017, 28, 64

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks all John Sutherland’s group members for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z. Synthesis of Prebiotic Building Blocks by Photochemistry. Chem. Res. Chin. Univ. 36, 985–991 (2020). https://doi.org/10.1007/s40242-020-0289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0289-6

Keywords

Navigation