Skip to main content
Log in

Theoretical Design and Adsorption Properties of Molecularly Imprinted Polymers Obtained from Chloramphenicol and Acrylamide

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Molecular simulations are widely used to model molecularly imprinted polymers(MIPs) in order to enhance their adsorption and selectivity. In this study, chloramphenicol(CAP) and acrylamide(AM) were used as the template and functional monomer, respectively, and pentaerythritol triacrylate(PETA), ethylene glycol dimethacrylate (EGDMA), and trimethylolpropane trimethylacrylate(TRIM) were used as cross-linking agents. The ωB97XD/6-31G(d,p) density functional theory method was employed to simulate binding sites, binding energy, the number of hydrogen bonds, the imprinted molar ratio, which produced the most stable complex, and the interaction mechanism. The cross-linking agent was optimized based on the binding energy. The atoms in molecules theory were used to study the nature of the imprinting effects. The theoretical calculations revealed that CAP and AM formed ordered complexes via hydrogen bonding interactions when the molar ratio between CAP and AM was 1:7 using TRIM as the cross-linking agent. The CAP-AM complex(molar ratio 1:7) had the most stable structure, the largest number of hydrogen bonds, and the smallest ΔE. The experimental results indicate that the CAP-MIPs formed perfect microspheres with an average particle size of 314 nm. Scatchard plot analysis showed that the CAP-MIPs had only one type of binding site over the studied concentration ranges. The dissociation equilibrium constant and maximum apparent adsorption capacities were 1887.35 mg/L(5.84 mmol/L) and 155.56 mg/g(0.482 mmol/g), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H. X., Ying J., Chen H., Huang J. L., Liao L., Chromatogr., 2008, 68, 629

    Article  CAS  Google Scholar 

  2. Yusof N. A., Rahman S. K. A., Hussein M. Z., Ibrahim N. A., Polymers, 2013, 5, 1215

    Article  Google Scholar 

  3. Douny C., Widart J., Pauw E. D., Maghuin-Rogister G., Scippo M. L., Food Anal. Methods, 2013, 6, 1458

    Article  Google Scholar 

  4. Xu Z. X., Gao H. J., Zhang L. M., Chen X. Q., Qian X. G., J. Food Sci., 2015, 76, R69

    Article  Google Scholar 

  5. Liang W. X., Hu H. W., Guo P. R., Ma Y. F., Li P. Y., Zheng W. R., Zhang M. J., Sci. Food Agr., 2014, 94, 1409

    Article  Google Scholar 

  6. Cheong W. J., Yang S. H., Ali F. D., J. Sep. Sci., 2013, 36, 60

    Article  Google Scholar 

  7. Zhang Y., Qian L., Yin W., He B., Liu F. M., Hou C. J., Huo D. Q., Fa H. B., Chem. Res. Chinese Universities, 2016, 32(5), 725

    Article  Google Scholar 

  8. Huang Y. X., Lian H. T., Sun X.Y., Liu B., Chem. Res. Chinese Universities, 2011, 27(1), 28

    Google Scholar 

  9. Wulff G., Liu J. Q., Acc. Chem. Res., 2012, 45, 239

    Article  CAS  Google Scholar 

  10. Liang D. D., Wang Y., Li S.Y., Li Y. Q., Zhang M. L., Li Y., Tian W. S., Liu J. B., Tang S. S., Li B., Jin R. F., Int. J. Mol. Sci., 2016, 17, 1750

    Article  Google Scholar 

  11. Liu J. B., Shi Y., Tang S. S., Jin R. F., Struc. Chem., 2016, 7, 897

    Google Scholar 

  12. Liu J. B., Wang Y., Su T. T., Li B., Tang S. S., Jin R. F., Struc. Chem., 2016, 7, 1135

    Google Scholar 

  13. Liu J. B., Wang Y., Tang S. S., Gao Q., Jin R. F., New J. Chem., 2017, 41, 13370

    Article  CAS  Google Scholar 

  14. Turiel E., Martínesteban A., Comput. Theor. Chem., 2017, 1108, 76

    Article  Google Scholar 

  15. Yu H., Koide H., Urakami T., Kanazawa H., Kodama T., Oku N., Shea K. J., Comput. Theor. Chem., 2017, 1117, 130

    Article  Google Scholar 

  16. Zhu R., Zhao W. H., Zhai M. J., Wei F. D., Cai Z., Sheng N., Hu Q., Anal. Chim. Acta, 2010, 658, 209

    Article  CAS  Google Scholar 

  17. Wang Y. D., Wang E. L., Dong H., Liu F., Wu Z. M., Li H., Wang Y., Adsorpt. Sci. Technol., 2014, 32, 321

    Article  Google Scholar 

  18. Chen H. Y., Ding L., Liu M. L., Chem. J. Chinese Universities, 2015, 36(1), 67

    Article  Google Scholar 

  19. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09(Revision A.02), Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

  20. Liu J. B., Wang G. Y., Tang S. S., Gao Q., Liang D. D., Jin R. F., J. Sep. Sci., 2019, 42, 769

    CAS  PubMed  Google Scholar 

  21. Achary K. R., Gowda D. S. S., Post M., Mat. Sci. Eng. C: Mater., 2013, 33, 189

    Article  Google Scholar 

  22. Steiner T., Angew. Chem. Int. Ed., 2002, 41, 49

    Google Scholar 

  23. Jeffrey G. A., Crystallogr. Rev., 2003, 9, 135

    Article  CAS  Google Scholar 

  24. Steiner T., Crystallogr. Rev., 2003, 9, 177

    Article  CAS  Google Scholar 

  25. Lipkowski P., Grabowski S. J., Robinson T. L., Leszczynski J., J. Phys. Chem. A, 2004, 108, 10865

    Article  CAS  Google Scholar 

  26. Rozas I., Alkorta A. I., Elguero J., J. Am. Chem. Soc., 2000, 122, 11154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Tang.

Additional information

Supported by the National Natural Science Foundation of China(No.21563002) and the Science and Technology Development Program Project of Jilin Province, China(No.JJKH20170299KJ).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhao, W., Tang, S. et al. Theoretical Design and Adsorption Properties of Molecularly Imprinted Polymers Obtained from Chloramphenicol and Acrylamide. Chem. Res. Chin. Univ. 36, 915–920 (2020). https://doi.org/10.1007/s40242-019-9267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-9267-2

Keywords

Navigation