Skip to main content
Log in

Improved Electrochemical Kinetic Performances of La-Mg-Ni-based Hydrogen Storage Alloy Modified by Ni-Polypyrrole Complex Surface Treatment

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In order to improve the electrochemical kinetic performances of La-Mg-Ni-based alloy, complex surface modification of Ni with excellent catalytic activity and conducting polymer polypyrrole(PPy) was performed via electroless plating method. FESEM images revealed that the complex Ni-PPy treatment resulted in more micropores at the alloy surface, with Ni particles and cotton fiber-shape PPy microspheres attached. Both the larger surface area induced by the micropore and the higher catalytic activity and conductivity on account of the dispersed Ni particles/PPy microspheres promoted the electrode reaction, thereby increasing the discharge capacity of the modified alloy electrode. Electrochemical impedance spectroscopy(EIS) and linear polarization results showed that the Ni-PPy treatment decreased the charge-transfer resistance and increased the exchange current density greatly, far more than the single-component Ni or PPy treatment. Consequently, a notable improvement in high rate dischargeability(HRD) was observed, and at a high discharge current density of 1800 mA/g, the HRD of the modified electrode increased by 10.4% compared with that of the bare electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y. F., Pan H. G., Gao M. X., Wang Q. D., J. Mater. Chem., 2011, 21(13), 4743

    Article  CAS  Google Scholar 

  2. Lv W., Yuan J. G., Zhang B., Wu Y., J. Alloy Compd., 2018, 730(1), 360

    Article  CAS  Google Scholar 

  3. Wei F. S., Cai X., Zhang Y., Wei F. N., Int. J. Electrochem. Sci., 2017, 12(1), 429

    Article  CAS  Google Scholar 

  4. Werwinski M., Szajek A., Marczynska A., Smardz L., Nowak M., Jurczyk M., J. Alloy Compd., 2018, 763(1), 951

    Article  CAS  Google Scholar 

  5. Li R. F., Yu R. H., Liu X. F., Wan J., Wang F., Electrochim. Acta, 2015, 158(1), 89

    Article  CAS  Google Scholar 

  6. Jiang W. Q., Qin C. S., Zhu R. R., Guo J., J. Alloy Compd., 2013, 565(1), 37

    Article  CAS  Google Scholar 

  7. Li P., Zhang J., Zhai F. Q., Ma G., Xu L., Qu X. H., J. Rare Earth., 2015, 33(4), 417

    Article  CAS  Google Scholar 

  8. Li W., Zhang B., Yuan J. G., Wu Y., Int. J. Hydrogen Energy, 2016, 41(27), 11767

    Article  CAS  Google Scholar 

  9. Xue C. J., Zhang L., Fan Y. P., Xue C. J., Zhang L., Fan Y. P., Fan G. X., Liu B. Z., Han S. M., Int. J. Hydrogen Energy, 2017, 42(9), 6051

    Article  CAS  Google Scholar 

  10. Lim K. L., Liu Y. N., Zhang Q. A., Lin K. S., Chan S. L. I., J. Alloy Compd., 2016, 661(1), 274

    Article  CAS  Google Scholar 

  11. Huang J. L., Qiu S. J., Chu H. L., Zou Y. J., Xiang C. L., Zhang H. Z., Xu F., Sun L. X., Ouyang L. Z., Zhou H. Y., Int. J. Hydrogen Energy, 2015, 40(41), 14173

    Article  CAS  Google Scholar 

  12. Qu X., Ma L., Jin C., Zhao X., Ding Y., Rare Metal Mat. Eng., 2011, 40(3), 543

    CAS  Google Scholar 

  13. Yuan H. P., Yang K., Jiang L. J., Liu X. P., Wang S. M., Int. J. Hydrogen Energy, 2015, 40(13), 4623

    Article  CAS  Google Scholar 

  14. Nakatsuji K., Ohyama H., US20110033748A1, 2011

  15. Xiao L. L., Wang Y. J., Liu Y., Song D. W., Jiao L. F., Yuan H. T., Int. J. Hydrogen Energy, 2008, 33(14), 3925

    Article  CAS  Google Scholar 

  16. Ngene P., Westerwaal R. J., Sachdeva S., Haije W., de Smet L. C. P. M., Dam B., Angew. Chem. Int. Ed., 2014, 53(1), 12081

    Article  CAS  Google Scholar 

  17. Sun L., Lin J., Liang F., Cao Z., Wang L., Mater. Lett., 2015, 161(1), 686

    Article  CAS  Google Scholar 

  18. Ananth M. V., Ananthi P. Int. J. Hydrogen Energy, 2008, 33(20), 5779

    Article  CAS  Google Scholar 

  19. Matssuoka M., Asai K., Asai K., Fukumoto Y., Iwakura C., J. Alloy Compd., 1993, 192(1), 149

    Article  Google Scholar 

  20. Ren J., Williams M., Lototskyy M., Davids W., Ulleberg Ø., Int. J. Hydrogen Energy, 2010, 35(16), 8626

    Article  CAS  Google Scholar 

  21. Ding H. L., Han S. M., Liu Y., Hao J. S., Li Y., Zhang J. W., Int. J. Hydrogen Energy, 2009, 34(23), 9402

    Article  CAS  Google Scholar 

  22. Wang Y. B., Tang W. K., Wang F., Ding C. P., Xu S. M., Yu R. H., Int. J. Hydrogen Energy, 2018, 43(6), 3244

    Article  CAS  Google Scholar 

  23. Li Y., Tao Y., Ke D. D., Ma Y. F., Han S. M., Appl. Surf. Sci., 2015, 357(B), 1714

    Article  CAS  Google Scholar 

  24. Zadorozhnyy M. Y., Klyamkin S. N., Strugova D. V., Olifirov L. K., Milovzorov G. S., Kaloshkin S. D., Kaloshkin S. D., Zadorozhnyy V. Y., Int. J. Mater. Res., 2016, 40(2), 273

    CAS  Google Scholar 

  25. Reddy A. L. M., Ramaprabhu S., Int. J. Hydrogen Energy, 2006, 31(7), 867

    Article  CAS  Google Scholar 

  26. Qi Y., Chu H., Xu F., Sun L., Zhang Y., Zhang J., Qiu S. J., Yuan H. T., Int. J. Hydrogen Energy, 2007, 32(15), 3395

    Article  CAS  Google Scholar 

  27. Wang B. P., Zhao L. M., Cai C. S., Wang S. X., Int. J. Hydrogen Energy, 2014, 39(20), 10374

    Article  CAS  Google Scholar 

  28. Hu L., Li J. P., Yang W., Ionics, 2015, 21(12), 3209

    Article  CAS  Google Scholar 

  29. Wang Y. C., Li Y., Shen W. Z., Pei Y. R., Liu J. J., Che J. Y. H., Yang S. Q., Han S. M., J. Solid State Electrochem., 2015, 19(5), 1419

    Article  CAS  Google Scholar 

  30. Yang S. Q., Li Y., Yuan Y. J., Dong Z. T., Ren K. L., Zhao Y. M., Chem. Res. Chinese Universities, 2018, 34(4), 604

    Article  CAS  Google Scholar 

  31. Zhao X. Y., Ma L. Q., Gao Y. J., Ding Y., Shen X. D., Int. J. Hydrogen Energy, 2009, 34(4), 1904

    Article  CAS  Google Scholar 

  32. Wu M. S., Wu H. R., Wang Y. Y., Wan C. C., J. Alloy Compd., 2000, 302(1/2), 248

    Article  CAS  Google Scholar 

  33. Li Y., Hou X. W., Wang C. X., Cheng L. N., Feng X. L., Han S. M., Int. J. Hydrogen Energy, 2018, 43(10), 5104

    Article  CAS  Google Scholar 

  34. Chi B., Lin H., Li J. B. Int. J. Hydrogen Energy, 2008, 33(18), 4763

    Article  CAS  Google Scholar 

  35. Notten P. H. L., Hokkeling P., J. Electrochem. Soc., 1991, 138(7), 1877

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuqin Yang or Laizhou Song.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 51571173, 51701175, 51771164).

Electronic Supplementary Material

40242_2019_9169_MOESM1_ESM.pdf

Improved Electrochemical Kinetic Performances of La-Mg-Ni-based Hydrogen Storage Alloy Modified by Ni-Polypyrrole Complex Surface Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wang, Y., Li, Y. et al. Improved Electrochemical Kinetic Performances of La-Mg-Ni-based Hydrogen Storage Alloy Modified by Ni-Polypyrrole Complex Surface Treatment. Chem. Res. Chin. Univ. 35, 1052–1057 (2019). https://doi.org/10.1007/s40242-019-9169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-9169-3

Keywords

Navigation