Skip to main content
Log in

Converting Thiophene in Simulated Coking Crude Benzene to N, N-Dimethyl-2-thiophenecarboxamide by Dimethylcarbamyl Chloride Under Mild Conditions

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Since the content of thiophene in coking crude benzene is high, it is necessary to remove it from coking crude benzene for efficient utilization. In this study, an important intermediate, N, N-dimethyl-2-thiophenecar-boxamide, was synthesized from thiophene and dimethylcarbamyl chloride. The influences of the dosages of dimethylcarbamyl chloride and ZnCl2 catalyst, reaction temperature and time on the removal rate were further explored based on the reaction kinetics. The structure of the target product was characterized by means of MS, 1H NMR and 13C NMR. The removal rate of thiophene was 98.14% after the reaction for 2 h and thiophene was almost removed after the reaction for 3 h under the optimal reaction conditions[a molar ratio of n(thiophene): n(dimethylcarbamyl chloride):n(ZnCl2)=1:12:10, 300 r/min, 318 K and 101.325 kPa]. The acylation of thiophene with dimethylcarbamyl chloride was approximately in accord with the first order kinetic equation at 303–323 K. The activation energy was 53.9850 kJ/mol and the pre-exponential factor was 1.4521×109 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dieterle M., Schwab E., Topics in Catalysis, 2016, 59(8/9), 817

    Article  CAS  Google Scholar 

  2. Eßer J., Wasserscheid P., Jess A., Green Chemistry, 2004, 6(7), 316

    Article  Google Scholar 

  3. Vagner S. E., Tryasunov B. G., Solid Fuel Chemistry, 2012, 46(4), 225

    Article  CAS  Google Scholar 

  4. Liu D., Gui J., Song L., Zhang X., Sun Z., Liquid Fuels Technology, 2008, 26(9), 973

    CAS  Google Scholar 

  5. Bosmann A., Datsevich L., Jess A., Lauter A., Schmitz C., Wasserscheid P., Chemical Communications, 2001, (23), 2494

  6. Li F. T., Ying L., Sun Z. M., Energy & Fuels, 2010, 24(8), 4285

    Article  CAS  Google Scholar 

  7. Tan X. Y., Wang X. S., Chemical Industry and Engineering Progress, 1998, (02), 57

  8. Liao J. J., Zhang Y. J., Wang W. B., Xie Y. Y., Chang L. P., Adsorption, 2012, 18(4), 181

    Article  CAS  Google Scholar 

  9. Guo S. C., Hu H. Q., Coal Chemical Technolgy(3rd Edition), Chemical Industry Press, Beijing, 2012

    Google Scholar 

  10. Zainab N., Jaf M. A., Hussein A. M., Jiang Z. T., Bogdan Z. D., Molecular Catalysis, 2018, 459, 21

    Article  Google Scholar 

  11. Yik E., Iglesia E., Journal of Catalysis, 2018, 368, 411

    Article  CAS  Google Scholar 

  12. Li G. X., Zhao L. M., Zhu H. Y., Liu X. P., Ma H. F., Yu Y. C., Guo W. Y., Physical Chemistry Chemical Physics, 2017, 19(26), 17449

    Article  CAS  Google Scholar 

  13. Sepulveda C., Belliere V., Laurenti D., Escalona D., García R., Geantet C., Vrinat M., Applied Catalysis A: General, 2010, 393(1/2), 288

    Google Scholar 

  14. Garcia C. L., Lercher J. A., Physical Chemistry, 1992, 96(6), 2669

    Article  CAS  Google Scholar 

  15. Ling M. Y., Chen H. H., Applied Mechanics & Materials, 2011, (130–134), 1066

  16. Xu H., Zhang D. D., Wu F. M., Cao R. Q., Fuel, 2017, 208, 508

    Article  CAS  Google Scholar 

  17. Luo G. H., Xu X., Yang C. Y., Zhang G. Y., Fuel & Chemical Processes, 2001, 32(2), 86

    Google Scholar 

  18. Liao J. J., Wang Y. S., Chang L. P., Bao W. R., Green Chemistry, 2015, 17(5), 3164

    Article  CAS  Google Scholar 

  19. Liao J. J., Bao L., Wang W. B., Xie Y. Y., Chang J. Y., Fuel Processing Technology, 2014, 117, 38

    Article  CAS  Google Scholar 

  20. Pan C. G., Ma H. Z., Advanced Materials Research, 2012, 524–527, 876

    Article  Google Scholar 

  21. Kang Z. J., Ma H. Z., Wang B., Industrial & Engineering Chemistry Research, 2009, 48(20), 9346

    Article  CAS  Google Scholar 

  22. Wang W. B., Ma L., Liao J. J., Xie Y. Y., Chang J. Y., Chang L. P., Chinese Journal of Catalysis, 2012, 33(2), 323

    CAS  Google Scholar 

  23. Niu C. C., Cao X. P., Chen L. J., Zeng A. W., Chemical Industry and Engineering Processese, 2012, 29(3), 11

    CAS  Google Scholar 

  24. Gao J., Chen X., Ren N., Wu W., Li C., Meng H., AIChE Journal, 2013, 59(8), 2966

    Article  CAS  Google Scholar 

  25. Chen X. Y., Gao J. J., Lu Y. Z., Meng H., Li C. X., Fuel Processing Technology, 2015, 130, 7

    Article  CAS  Google Scholar 

  26. Li Y. W., Ma H. Z., Advanced Materials Research, 2012, 455/456(4), 966

    Article  Google Scholar 

  27. Sun H. B., Hua R. M., Chen S. J., Yin Y. W., Advanced Synthesis & Catalysis, 2006, 348(14), 1919

    Article  CAS  Google Scholar 

  28. Khatri C., Jain D., Rani A., Fuel, 2010, 89(12), 3853

    Article  CAS  Google Scholar 

  29. Makihara M., Aoki H., Komura K., Catalysis Letters, 2018, 148(10), 2974

    Article  CAS  Google Scholar 

  30. Kawamura M., Cui D. M., Hayashi T., Shimada S., Tetrahedron Letters, 2003, 44(42), 7715

    Article  CAS  Google Scholar 

  31. Kawamura M., Cui D. M., Shimada S., Cheminform, 2007, 62(39), 9201

    Google Scholar 

  32. Lsaev Y., Fripiat J. J., Journal of Catalysis, 1999, 182(1), 257

    Article  Google Scholar 

  33. Xu K., Hu Y. B., Zhang S., Zha Z. G., Wang Z. Y., Chemistry-A European Journal, 2012, 18(32), 9793

    Article  CAS  Google Scholar 

  34. Bao Y. S., Wang L. L., Jia M. L., Xu A. J., Agula B., Baiyin M., Zhaorigetu B., Green Chemistry, 2016, 18(13), 3808

    Article  CAS  Google Scholar 

  35. Mohammad A., Chandra P., Ghosh T., Carraro M., Mobin S. M., Inorganic Chemistry, 2017. 56(17), 10590

    Article  Google Scholar 

  36. Asai S., Ban K., Monguchi Y., Sajiki H., Sawama Y., Synlett., 2018, 29(3), 322

    Article  CAS  Google Scholar 

  37. Han X. Z., Ouyang G. P., He B. A., Guangzhou Chemical Industry, 2013, 41(5), 113

    CAS  Google Scholar 

  38. Shirinian V. Z., Leonid L., Belen K., Krayushkin M. M., Cheminform, 2002, 33(32), 19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhou Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Song, H., Fang, L. et al. Converting Thiophene in Simulated Coking Crude Benzene to N, N-Dimethyl-2-thiophenecarboxamide by Dimethylcarbamyl Chloride Under Mild Conditions. Chem. Res. Chin. Univ. 35, 674–679 (2019). https://doi.org/10.1007/s40242-019-8414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-8414-0

Keywords

Navigation