Skip to main content
Log in

Highly Soluble Phenylethynyl-terminated Imide Oligomers and Thermosetting Polyimides Based on 2,2′,3,3′-Biphenyltetracarboxylic Dianhydride

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The properties of a series of imide oligomers were characterized according to their molecular weights, solubility, and thermal and rheological properties. This series of imide oligomers was synthesized via a two-step method using 2,2′,3,3′-biphenyltetracarboxylic dianhydride(3,3′-BPDA) and aromatic diamines as the monomers, and 4-phenylethynyl phthalic anhydride(PEPA) as the end-capping agent. The imide oligomers based on 3,3′-BPDA showed excellent solubility in low boiling point solvents and low melt viscosity, which were attributed to their unique bent architectures. High-performance thermosetting polyimides were produced from these oligomers via thermal crosslinking of the phenylethynyl groups. The mechanical and thermal properties of the thermosets were studied using tensile testing, dynamic mechanical thermal analysis(DMTA), and thermogravimetric analysis(TGA). The 3,3′-BPDA-based thermosets exhibited excellent thermal properties, with glass transition temperatures of up to 455 °C, and 5% mass loss temperatures of up to 569 °C in air. The thermosets based on 3,3′-BPDA showed superior thermal properties compared to those derived from TriA-X series oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sroog C. E., Prog. Polym. Sci., 1991, 16(4), 561

    Article  CAS  Google Scholar 

  2. Hasegawa M., Matano T., Shindo Y., Macromolecules, 1996, 29(24), 7897

    Article  CAS  Google Scholar 

  3. Meador M. A., Annu. Rev. Mater. Sci., 1998, 28(1), 599

    Article  CAS  Google Scholar 

  4. Hergenrother P. M., Watson K. A., Smith J. G., Connell J. W., Yokota R., Polymer, 2002, 43(19), 5077

    Article  CAS  Google Scholar 

  5. Hergenrother P. M., Watson K. A., Smith J. G., Connell J. W., Yokota R., Polymer, 2004, 45(16), 5441

    Article  CAS  Google Scholar 

  6. Liu Y. W., Huang J., Tan J. H., Zeng Y., Ding Q., Zhang H. L., Liu Y. J., Xiang X. W., Polym. Int., 2017, 66(8), 1214

    Article  CAS  Google Scholar 

  7. Khalid N., Park O. O., Akhter T., Siddiqi H. M., J. Appl. Polym. Sci., 2017, 134(9), 1

    Article  CAS  Google Scholar 

  8. Song G. L., Wang D. M., Zhao X. G., Dang G. D., Zhou H. W., Chen C. H., High Perform. Polym., 2013, 25(3), 354

    Article  CAS  Google Scholar 

  9. Li T. Y., Huang H. H., Wang L., Chen Y. M., RSC Adv., 2017, 7(65), 40996

    Article  CAS  Google Scholar 

  10. Ma X. Y., Kang C. Q., Chen W. H., Jin R. Z., Guo H. Q., Qiu X. P., Gao L. X., J. Polym. Sci. Pol. Chem., 2016, 54(4), 570

    Article  CAS  Google Scholar 

  11. Yan S. Y., Chen W. Q., Yang X. J., Chen C. A., Huang M. F., Xu Z. S., Yeung K. W. K., Yi C. F., Polym. Bull., 2011, 66(9), 1191

    Article  CAS  Google Scholar 

  12. Serafini T. T., Delvigs P., Lightsey G. R., J. Appl. Polym. Sci., 1972, 16(4), 905

    Article  CAS  Google Scholar 

  13. Vannucci R. D., SAMPE J., 1987, 19(1), 31

    CAS  Google Scholar 

  14. Scola D. A., Wai M., J. Appl. Polym. Sci., 1994, 52(3), 421

    Article  CAS  Google Scholar 

  15. Chuang K. C., Bowman C. L., Tsotsis T. K., Arendt C. P., High Perform. Polym., 2003, 15(4), 459

    Article  CAS  Google Scholar 

  16. Hao J. Y., Hu A. J., Yang S. Y., High Perform. Polym., 2002, 14(4), 325

    Article  CAS  Google Scholar 

  17. Wilson D., British Polym. J., 1988, 20(5), 405

    Article  CAS  Google Scholar 

  18. Pater R. H., SAMPE J., 1994, 30(5), 29

    CAS  Google Scholar 

  19. Hergenrother P. M., Connell J. W., Smith J. G., Polymer, 2000, 41(13), 5073

    Article  CAS  Google Scholar 

  20. Yokota R., Yamamoto S., Yano S., Sawaguchi T., Hasegawa M., Yamaguchi H., Ozawa H., Sato R., High Perform. Polym., 2001, 13(2), S61

    Article  CAS  Google Scholar 

  21. Hergenrother P. M., High Perform. Polym., 2003, 15(1), 3

    Article  CAS  Google Scholar 

  22. Liu Y. F., Wang Z., Li G., Ding M. X., High Perform. Polym., 2010, 20(1), 95

    Article  CAS  Google Scholar 

  23. Meng X. S., Yan J. L., Fan W. F., Liu J. F., Wang Z., Li G. D., RSC Adv., 2014, 4(71), 37458

    Article  CAS  Google Scholar 

  24. Smith J. G., Connell J. W., Hergenrother P. M., Ford L. A., Criss J. M., Macromol. Symp., 2003, 199(1), 401

    Article  CAS  Google Scholar 

  25. Connell J. W., Smith J. G., Hergenrother P. M., High Perform. Polym., 2003, 15(4), 375

    Article  CAS  Google Scholar 

  26. Connell J. W., Smith J. G., Hergenrother P. M., 49th Int. SAMPE Symp., Covina: Soc Advancement Material & Process Engineering, Long Beach, CA, 2004

    Google Scholar 

  27. Smith J. G., Connell J. W., Hergenrother P. M., Criss J. M., J. Compos. Mater., 2002, 36(19), 2255

    Article  CAS  Google Scholar 

  28. Hergenrother P. M., Connell J. W., Smith J. G., Polymer, 2000, 41(3), 5073

    Article  CAS  Google Scholar 

  29. Ishida Y., Ogasawara T., Yokota R., High Perform. Polym., 2006, 18(5), 727

    Article  CAS  Google Scholar 

  30. Hergenrother P. M., Smith J. G., Polymer, 1994, 35(22), 4857

    Article  CAS  Google Scholar 

  31. Smith J. G., Connell J. W., Hergenrother P. M., J. Compos. Mater., 2000, 34(7), 614

    Article  CAS  Google Scholar 

  32. Miyauchi M., Ishida Y., Ogasawara T., Yokota R., Polym. J., 2012, 44(9), 959

    Article  CAS  Google Scholar 

  33. Miyauchi M., Ishida Y., Ogasawara T., Yokota R., React. Funct. Polym., 2013, 73(2), 340

    Article  CAS  Google Scholar 

  34. Fan W. F., Liu X. J., Yan J. L., Meng X. S., Liu J. F., Wang Z., Chem. J. Chinese Universities, 2016, 37(10), 1926

    CAS  Google Scholar 

  35. Tong Y. J., Huang W. X., Luo J., Ding M. X., J. Polym. Sci. Polym. Chem., 1999, 37(10), 1425

    Article  CAS  Google Scholar 

  36. Rozhanskii I., Okuyama K., Goto K., Polymer, 2000, 41(19), 7057

    Article  CAS  Google Scholar 

  37. Zhou H. W., Chen C. H., Kanbara R., Sasaki T., Yokota R., High Perform. Polym., 2005, 17(2), 193

    Article  CAS  Google Scholar 

  38. Ding M. X., Wang X. Q., Yang Z. H., Process for the Preparation of 3,3′,4,4′-Biphenyltetracarboxylic Acid and Its Derivatives, US 5081281, 1992

    Google Scholar 

  39. Wang Z., Gao L. X., Ding M. X., Preparation of 4-Phenylethynyl Phthalic Anhydride, CN ZL200310115829.8, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Fan.

Additional information

Supported by the Technology Innovation Fund of Chinese Academy of Sciences(No.CXJJ-17-M159) and the National Natural Science Foundation of China(No.51473157).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Lu, G., Liu, X. et al. Highly Soluble Phenylethynyl-terminated Imide Oligomers and Thermosetting Polyimides Based on 2,2′,3,3′-Biphenyltetracarboxylic Dianhydride. Chem. Res. Chin. Univ. 35, 530–536 (2019). https://doi.org/10.1007/s40242-019-8334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-8334-z

Keywords

Navigation