Skip to main content
Log in

Ultraviolet Light Assisted Hierarchical Porous Fe2O3 Catalyzing Heterogeneous Fenton Degradation of Tetracycline Under Neutral Condition with a Low Requirement of H2O2

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The hierarchical porous Fe2O3 particles as a novel ultraviolet light assisted heterogeneous Fenton catalysts were synthesized by bio-template synthesis method using iron nitrate as precursor at high temperature of around 550 °C. The hierarchical porous structured Fe2O3 was endowed with a large surface area and abundant pore volume, leading to the exposure of more active sites and rapid mass transfer. The synergistic effect of UV irradiation and hierarchical porous Fe2O3 improved the photo-degradation efficiency of Tetracycline(TC). The degradation efficiency of Fe2O3 catalyzing UV-Fenton system reached 97.4% after 60 min reaction, which was more substantial than Fe2O3 catalyzing Fenton system(7.6%) and UV/H2O2 system(59.2%). Moreover, the hierarchical porous Fe2O3 catalyzing UV-Fenton system exhibited an extremely wide pH range(from 3.0 to 9.0, from mildly acidic to slightly alkaline) for efficient degradation of TC. Simultaneously, the extraordinary higher degradation efficiency was based on 10 mmol/L H2O2 concentration, which was low requirement for H2O2. Further, the hierarchical porous Fe2O3 can be used for five consecutive cycles with over 95% of the original degradation efficiency. Ultraviolet light assisted heterogeneous Fenton reaction in the hierarchical porous Fe2O3 improved the •OH and O2 •‒production and Fe(III)/Fe(II) redox cycle, which consequently achieved an excellent degradation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polubesova T., Zadaka D., Groisman L., Nir S., Water Res., 2006, 40(12), 2369

    Article  CAS  PubMed  Google Scholar 

  2. Sarmah A. K., Meyer M. T., Boxall A. B. A., Chemosphere, 2006, 65(5), 725

    Article  CAS  PubMed  Google Scholar 

  3. Meijide J., Gomez J., Pazos M., Sanroman M. A., J. Hazard. Mater., 2016, 319, 43

    Article  CAS  PubMed  Google Scholar 

  4. Lan H., Wang A., Liu R., Liu H., Qu J., J. Hazard. Mater., 2015, 285, 167

    Article  CAS  PubMed  Google Scholar 

  5. Qian X., Ren M., Zhu Y., Yue D., Han Y., Jia J., Zhao Y., Environ. Sci. Technol., 2017, 51(7), 3993

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y., Jin W., Zhao Y., Zhang G., Zhang W., Applied Catalysis B: Environmental, 2017, 206, 642

    Article  CAS  Google Scholar 

  7. Fei B. L., Deng N. P., Wang J. H., Liu Q. B., Long J. Y., Li Y. G., Mei X., J. Hazard. Mater., 2017, 340, 326

    Article  CAS  PubMed  Google Scholar 

  8. Trellu C., Mousset E., Pechaud Y., Huguenot D., van Hullebusch E. D., Esposito G., Oturan M. A., J. Hazard. Mater., 2016, 306, 149

    Article  CAS  PubMed  Google Scholar 

  9. Luo W., Zhu L., Wang N., Tang H., Cao M., She Y., Environ. Sci. Technol., 2010, 44(5), 1786

    Article  CAS  Google Scholar 

  10. Wang Y., Lin X., Shao Z., Shan D., Li G., Irini A., Chemical Engineering Journal, 2017, 313, 938

    Article  CAS  Google Scholar 

  11. Hou X., Huang X., Ai Z., Zhao J., Zhang L., J. Hazard. Mater., 2016, 310, 170

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y., Sun Y., Li W., Tian W., Irini A., Chemical Engineering Journal, 2015, 267, 1

    Article  CAS  Google Scholar 

  13. Christoforidis K. C., Montini T., Bontempi E., Zafeiratos S., Jaén J. J. D., Fornasiero P., Applied Catalysis B: Environmental, 2016, 187, 171

    Article  CAS  Google Scholar 

  14. Fischbacher A., von Sonntag C., Schmidt T. C., Chemosphere, 2017, 182, 738

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y., Fang J., Crittenden J. C., Shen C., J. Hazard. Mater., 2017, 329, 321

    Article  CAS  PubMed  Google Scholar 

  16. Li W., Wang Y., Irini A., Chemical Engineering Journal, 2014, 244, 1

    Article  CAS  Google Scholar 

  17. Fan T. X., Chow S. K., Zhang D., Progress in Materials Science, 2009, 54(5), 542

    Article  CAS  Google Scholar 

  18. Zhang X., Dong Z., Liu S., Shi Y., Dong Y., Feng W., Sensors and Actuators B: Chemical, 2017, 243, 1224

    Article  CAS  Google Scholar 

  19. Liu Z., Bai H., Sun D., Applied Catalysis B: Environmental, 2011, 104, 234

    Article  CAS  Google Scholar 

  20. Ai L., Zhang C., Jiang J., Applied Catalysis B: Environmental, 2013, 142/143, 744

    Google Scholar 

  21. Zhou L., Song W., Chen Z., Yin G., Environ. Sci. Technol., 2013, 47(8), 3833

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X., Huang L., Wang Q., Dong S., Journal of Materials Chemistry A, 2017, 5(35), 18839

    Article  CAS  Google Scholar 

  23. Xu L., Wang J., Environ. Sci. Technol., 2012, 46(18), 10145

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H., Ran X., Wu X., J. Hazard. Mater., 2012, 241/242, 259

    Google Scholar 

  25. Schrank S. G., Jose H. J., Moreira R. F., Schroder H. F., Chemosphere, 2005, 60(5), 644

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y., Jin W., Zhao Y., Zhang G., Zhang W., Applied Catalysis B: Environmental, 2017, 206, 642

    Article  CAS  Google Scholar 

  27. Mecha A. C., Onyango M. S., Ochieng A., Momba M. N. B., Chemosphere, 2017, 186, 669

    Article  CAS  PubMed  Google Scholar 

  28. Han S. K., Hwang T. M., Yoon Y., Kang J. W., Chemosphere, 2011, 84(8), 1095

    Article  CAS  PubMed  Google Scholar 

  29. Giannakis S., Liu S., Carratalà A., Rtimi S., Talebi A. M., Bensimon M., Pulgarin C., J. Hazard. Mater., 2017, 339, 223

    Article  CAS  PubMed  Google Scholar 

  30. Nietojuarez J. I., Pierzchła K., Sienkiewicz A., Kohn T., Environ. Sci. Technol., 2010, 44(9), 3351

    Article  CAS  Google Scholar 

  31. Xu J., Sahai N., Eggleston C. M., Schoonen M. A. A., Earth & Planetary Sciences Letters, 2013, 363, 156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng.

Additional information

Supported by the National Natural Science Foundation of China(No.6177030724).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Xie, F., Yu, X. et al. Ultraviolet Light Assisted Hierarchical Porous Fe2O3 Catalyzing Heterogeneous Fenton Degradation of Tetracycline Under Neutral Condition with a Low Requirement of H2O2. Chem. Res. Chin. Univ. 35, 304–310 (2019). https://doi.org/10.1007/s40242-019-8238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-8238-y

Keywords

Navigation