Skip to main content
Log in

Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Artificial base pairs, from the perspective of synthetic biology, are designed to contain the features of modularity, orthogonality, and manipulability. And the development of artificial base pairs has been endowed with responsibility to understand the biological process, improve the recognition capacity and stability of aptamers, and develop the nucleoside drugs, diagnosis, and drug delivery. In this review, we first gave a concise introduction of artificial base pairs based on their interaction modes including alternative hydrogen bonding, hydrophobic interaction, and metal coordination. Then we displayed the detailed information of artificial base pairs with hydrogen bonding interaction, and analyzed how the changes of their structures affect their functions. Subsequently, we highlighted the applications of functional artificial base pairs in aptamer discovery, diagnosis, and drug delivery. Finally, an insight into the remaining challenges and future perspective of the artificial bases was provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Switzer C. Y., Moroney S. E., Benner S. A., J. Am. Chem. Soc., 1989, 111, 8322

    Article  CAS  Google Scholar 

  2. Wan W. B., Seth P. P., J. Med. Chem., 2016, 59, 9645

    Article  CAS  Google Scholar 

  3. Smith C. L. E., Zain R., Annu. Rev. Pharmacol. Toxicol., 2019, 59, 605

    Article  CAS  Google Scholar 

  4. Benner S. A., Acc. Chem. Res., 2004, 37, 784

    Article  CAS  Google Scholar 

  5. Dien V. T., Holcomb M., Romesberg F. E., Biochemistry, 2019, 58, 2581

    Article  CAS  Google Scholar 

  6. Feldman A. W., Romesberg F. E., Acc. Chem. Res., 2018, 51, 784

    Article  Google Scholar 

  7. Takezawa Y., Shionoya M., Acc. Chem. Res., 2012, 45, 2066

    Article  CAS  Google Scholar 

  8. Muller J., Coordin. Chem. Rev., 2019, 393, 37

    Article  Google Scholar 

  9. Hutter D., Benner S. A., J. Org. Chem., 2003, 68, 9839

    Article  CAS  Google Scholar 

  10. Yang Z., Sismour A. M., Sheng P., Puskar N. L., Benner S. A., Nucleic Acids Res., 2007, 35, 4238

    Article  CAS  Google Scholar 

  11. Sismour A. M., Lutz S., Park J., Lutz M. J., Boyer P. L., Hughes H., Benner S. A., Nucleic Acids Res., 2004, 32, 728

    Article  CAS  Google Scholar 

  12. Yang Z., Chen F., Alvarado J. B., Benner S. A., J. Am. Chem. Soc., 2011, 133, 15105

    Article  CAS  Google Scholar 

  13. Leal N. A., Kim H. J., Hoshika S., Kim M. J., Carrigan M. A. Benner S. A., ACS Synth. Biol., 2015, 44, 407

    Article  Google Scholar 

  14. Bain J. D., Switzer C., Chamberlin R., Benner S. A., Nature, 1992, 356, 537

    Article  CAS  Google Scholar 

  15. Kim H. J., Leal N. A., Benner S. A., Bioorg. Med. Chem., 2009, 17, 3728

    Article  CAS  Google Scholar 

  16. Hoshika S., Leal N. A., Kim M. J., Kim M. S., Karalkar N. B., Kim H. J., Bates A. M., Watkins Jr. N. E., Santalucia H. A., Meyer A. J., Dasgupta S., Piccirilli J. A., Ellington A. D., Santalucia Jr. J., Georgiadis M. M., Benner S. A., Science, 2019, 363, 884

    Article  CAS  Google Scholar 

  17. Morales J. C., Kool E. T., Nat. Struct. Biol., 1998, 5, 950

    Article  CAS  Google Scholar 

  18. Hirao I., Kimoto M., Mitsui T., Fujiwara T., Kawai R., Sato A., Harada Y., Yokoyama S., Nat. Methods, 2006, 3, 729

    Article  CAS  Google Scholar 

  19. Kimoto M., Matsunaga K. I., Hirao I., Current Protocols in Chemical Biology, 2017, 9, 315

    Article  CAS  Google Scholar 

  20. Leconte A. M., Romesberg F. E., Nat. Methods, 2006, 3, 667

    Article  CAS  Google Scholar 

  21. Li L., Degardin M., Lavergne T., Malyshev D. A., Dhami K., Ordoukhanian P., Romesberg F. E., J. Am. Chem. Soc., 2014, 136, 826

    Article  CAS  Google Scholar 

  22. Malyshev D. A., Dhami K., Lavergne T., Chen T., Dai N., Forster J. M., Correa I. R., Romesberg F. E., Nature, 2014, 509, 385

    Article  CAS  Google Scholar 

  23. Thyer R., Ellefson J., Nature, 2014, 509, 291

    Article  CAS  Google Scholar 

  24. Katz S., Biochim. Biophys. Acta, 1963, 68, 240

    Article  CAS  Google Scholar 

  25. Swasey S. M., Gwinn E. G., New J. Phys., 2016, 045008

    Article  Google Scholar 

  26. Yang Z., Hutter D., Sheng P., Sismour A. M., Benner S. A., Nucleic Acids Res., 2006, 34, 6095

    Article  CAS  Google Scholar 

  27. Sheng P., Yang Z., Kim Y., Wu Y., Tan W., Benner S. A., Chem. Commun., 2008, 5128

  28. Sefah K., Yang Z., Bradley K. M., Hoshika S., Jiméneza E., Zhang L., Zhu G., Shanker S., Yue F., Turek D., Tan W., Benner S. A., Proc. Natl. Acad. Sci. USA, 2014, 111, 1449

    Article  CAS  Google Scholar 

  29. Wang S., Zhang L., Wan S., Cansiz S., Cui C., Liu Y., Cai R., Hong C., Teng I. T., Shi M., Wu Y., Dong Y., Tan W., ACS Nano, 2017, 11, 3943

    Article  CAS  Google Scholar 

  30. Tan J., Zhao M., Wang J., Li Z., Liang L., Zhang L., Yuan Q., Tan W., Angew. Chem. Int. Ed., 2019, 58, 1621

    Article  CAS  Google Scholar 

  31. Wang L., Liang H., Sun J., Liu Y., Li J., Li J., Yang H., J. Am. Chem. Soc., 2019, 141, 12673

    Article  CAS  Google Scholar 

  32. Chen S., Xu Z., Yang W., Lin X., Li J., Li J., Yang H., Angew. Chem. Int. Ed., 2019, 58, 18186

    Article  CAS  Google Scholar 

  33. Wang R., Zhu G., Mei L., Xie Y., Ma H., Ye M., Qing F. L., Tan W., J. Am. Chem. Soc., 2014, 136, 2731

    Article  CAS  Google Scholar 

  34. Jin C., Zhang H., Zou J., Liu Y., Zhang L., Li F., Wang R., Xuan W., Ye M., Tan W., Angew. Chem. Int. Ed., 2018, 57, 8994

    Article  CAS  Google Scholar 

  35. Wang R., Jin C., Zhu X., Zhou L., Xuan W., Liu Y., Liu Q., Tan W., J. Am. Chem. Soc., 2017, 139, 9104

    Article  CAS  Google Scholar 

  36. Abdullah R., Xie S., Wang R., Jin C., Du Y., Fu T., Li J., Tan J., Zhang L., Tan W., Anal. Chem., 2019, 91, 2074

    Article  CAS  Google Scholar 

  37. Zhang L., Abdullah R., Hu X., Bai H., Fan H., He L., Liang H., Zou J., Liu Y., Sun Y., Zhang X., Tan W., J. Am. Chem. Soc., 2019, 141, 4282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21622502, 21702136), the Natural Science Foundation of Fujian Province, China(No.2017J06004) and the Shanghai Rising-star Program, China(No.19QA1405400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Chen, S., Wang, X. et al. Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity. Chem. Res. Chin. Univ. 36, 151–156 (2020). https://doi.org/10.1007/s40242-019-0024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-0024-3

Keywords

Navigation