Skip to main content
Log in

Screen, Design and Enzymatic Activity Determination of Artificial Microperoxidases

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Peroxidase activity greatly impacts the maintenance of free radical homeostasis, and can prevent or treat diseases related to free radicals. Microperoxidase-11(MP-11) is created via hydrolysis of cytochrome c iron-porphyrin complexes. In these complexes, the heme iron is penta-coordinate with histidine and exhibits excellent antioxidant activity when decomposing hydrogen peroxide. In this study, we screened the Ph.D.-7 and Ph.D.-12 phage display peptide libraries and obtained ten small peptide ligands of deuterohemin(the vinyl groups of oxidized heme). Among these polypeptides, DhHP-7P1, 12P1, 12P2 and 12P6 have good enzymatic activity compared with MP-11, and exhibit activities up to 50% of MP-11. Based on the screened sequences, we designed a series of artificial microperoxidases and determined that a higher peroxidase activity could be achieved with an enzymatic active site containing a second site of histidine residue spaced between two arginine residues with an interval of two amino acids(Dh-XHRXXR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H. P., Qian S. Y., Schafer F. Q., Domann F. E., Oberley L. W., Buettner G. R., Free Radical Biology & Medicine, 2001, 30(8), 825

    Article  CAS  Google Scholar 

  2. Raes M., Michiels C., Remacle J., Free Radical Biology & Medicine, 1987, 3(1), 3

    Article  CAS  Google Scholar 

  3. Dianzani M. U., Boll. Soc. Ital. Biol. Sper., 1992, 68(8/9), 491

    CAS  PubMed  Google Scholar 

  4. Nakano Y., Asada K., Plant & Cell Physiology, 1981, 22(5), 867

    CAS  Google Scholar 

  5. Badyal S. K., Eaton G., Mistry S., Pipirou Z., Basran J., Metcalfe C. L., Gumiero A., Handa S., Moody P. C., Raven E. L., Biochemistry, 2009, 48(22), 4738

    Article  CAS  PubMed  Google Scholar 

  6. Raven E. L., Heme Peroxidases, Springer, Berlin, Heidelberg, 2013, 962

    Google Scholar 

  7. Wang X., Tachikawa H., Yi X., Manoj K. M., Hager L. P., Journal of Biological Chemistry, 2003, 278(10), 7765

    Article  CAS  PubMed  Google Scholar 

  8. Welinder K. G., Curr. Opi. Struct. Biol., 1992, 2(3), 388

    Article  CAS  Google Scholar 

  9. Ryabova E. S., Dikiy A., Hesslein A. E., Bjerrum M. J., Ciurli S., Nordlander E., Journal of Biological Inorganic Chemistry, 2004, 9(4), 385

    Article  CAS  PubMed  Google Scholar 

  10. Franzen S., Boxer S. G., Dyer R. B., Woodruff W. H., Journal of Physical Chemistry B, 2000, 104(44), 10359

    Article  CAS  Google Scholar 

  11. Traylor T. G., Lee W. A., Stynes D. V., Oxidases & Related Redox Systems, 1984, 40(3), 553

    CAS  Google Scholar 

  12. Quilez R., De L. S., Desfosses B., Mansuy D., Mahy J. P., Febs. Letters, 1996, 395(1), 73

    Article  CAS  PubMed  Google Scholar 

  13. Bertini I., Turano P., Vila A. J., Journal of Clinical Microbiology, 1993, 47(4), 1225

    Google Scholar 

  14. Huystee R. B. V., Structure, 1996, 4(3), 311

    Article  PubMed  Google Scholar 

  15. Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L., Nature Structural Biology, 1997, 4(12), 1032

    Article  CAS  PubMed  Google Scholar 

  16. Wirstam M., Siegbahn P. E. M., Journal of the American Chemical Society, 2000, 122(35), 8539

    Article  CAS  Google Scholar 

  17. Asada K., Physiologia Plantarum, 2010, 85(2), 235

    Article  Google Scholar 

  18. Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., Journal of Experimental Botany, 2002, 53(372), 1305

    Article  CAS  PubMed  Google Scholar 

  19. Davletova S., Rizshsky L., Liang H., Zhong S., Oliver D. J., Coutu J., Shulaev V., Schlauch K., Mittler R., The Plant Cell, 2005, 17(1), 268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsou C. L., Biochemical Journal, 1951, 49(49), 512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aron J., Baldwin D. A., Marques H. M., Pratt J. M., Adams P. A., Journal of Inorganic Biochemistry, 1986, 27(4), 227

    Article  CAS  PubMed  Google Scholar 

  22. Baldwin D. A., Marques H. M., Pratt J. M., Journal of Inorganic Biochemistry, 1987, 30(3), 203

    Article  CAS  PubMed  Google Scholar 

  23. Galende P. P., Cuadrado N. H., Kostetsky E. Y., Roig M. G., Villar E., Shnyrov V. L., Kennedy J. F., International Journal of Biological Macromolecules, 2015, 81, 1005

    Article  CAS  Google Scholar 

  24. Deyhimi F., Nami F., International Journal of Chemical Kinetics, 2012, 44(10), 699

    Article  CAS  Google Scholar 

  25. Laszlo J. A., Compton D. L., Journal of Molecular Catalysis B: Enzymatic, 2002, 18(1), 109

    Article  CAS  Google Scholar 

  26. Reszka K. J., O’Malley Y., McCormick M. L., Denning G. M., Briti-gan B. E., Free Radical Biology & Medicine, 2004, 36(11), 1448

    Article  CAS  Google Scholar 

  27. Geysen H. M., Rodda S. J., Mason T. J., Molecular Immunology, 1986, 23(7), 709

    Article  CAS  PubMed  Google Scholar 

  28. Pande J., Szewczyk M. M., Grover A. K., Biotechnology Advances, 2010, 28(6), 849

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y. L., Guo L., Roeske R., Luo G. M., Li W., Acta Scientiarium Naturalium Universitatis Jilinensis, 2001, 1(1), 91

    Google Scholar 

  30. Zeng Y., Liu L., He J., Liu Y., Zhu C., You X., Wu Y., Canadian Journal of Microbiology, 2012, 58(7), 898

    Article  CAS  PubMed  Google Scholar 

  31. Yang W. J., Lai J. F., Peng K. C., Chiang H. J., Weng C. N., Shiuan D., Journal of Immunological Methods, 2005, 304(1), 15

    Article  CAS  PubMed  Google Scholar 

  32. Miyake C., Michihata F., Asada K., Plant & Cell Physiology, 1991, 32(1), 33

    CAS  Google Scholar 

  33. Vuleta A., Jovanovic S. M., Tucic B., Plant Physiology & Biochemistry, 2016, 100, 166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Wang.

Additional information

Supported by the National Natural Science Foundation of China(No.31401086), the Program of the Science and Technology Development of Jilin Province, China(No.20150520157JH), the Postdoctoral Science Foundation of China(No.2015M581398) and the Special Project for Health of Jilin Province, China(No.2018SCZWSZX-037).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhao, X., Yuan, Y. et al. Screen, Design and Enzymatic Activity Determination of Artificial Microperoxidases. Chem. Res. Chin. Univ. 34, 934–938 (2018). https://doi.org/10.1007/s40242-018-8053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-8053-x

Keywords

Navigation