Skip to main content
Log in

Aerobic alcohol ammoxidation catalyzed by copper(I)/amino acid: a scalable protocol to nitriles

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A facile, practical and scalable catalyst system for alcohols ammoxidation into nitriles is developed using amino acid as ligand, oxygen as terminal oxidant and copper iodide(CuI) as catalyst. The catalyst system shows excellent functional groups compatibility for a wide range of testing substrates, even the substrates bearing oxidation-sensitive groups such as MeS—, alkenyl and —NH2 can also work well. In addition, the protocol is readily scaled up to more than 20 g and the product can be obtained just through filtration or distillation without conventional column chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgson H. H., Chem. Rev., 1947, 40(2), 251

    Article  CAS  Google Scholar 

  2. Rappoport Z., The Chemistry of the Cyano Group, John Wiley & Sons, London, 1970

    Google Scholar 

  3. Fatiadi A. J., Preparation and Synthetic Applications of Cyano Compounds, Wiley, New York, 1983

    Book  Google Scholar 

  4. Larock R. C., Comprehensive Organic Transformations: a Guide to Functional Group Preparations, John Wiley & Sons, New York, 1999

    Google Scholar 

  5. Fleming F. F., Nat. Prod. Rep., 1999, 16(5), 597

    Article  CAS  Google Scholar 

  6. Liu K. C., Howe R. K., J. Org. Chem., 1983, 48(24), 4590

    Article  CAS  Google Scholar 

  7. Harris T. M., Harris C. M. T., Oster A., Brown L. E., Lee J. Y. C., J. Am. Chem. Soc., 1988, 110(18), 6180

    Article  CAS  Google Scholar 

  8. Galli C., Chem. Rev., 1988, 88(5), 765

    Article  CAS  Google Scholar 

  9. Miller J. S., Manson J. L., Acc. Chem. Res., 2001, 34(7), 563

    Article  CAS  Google Scholar 

  10. Martin A., Kalevaru V. N., Chem. Cat. Chem., 2010, 2(12), 1504

    CAS  Google Scholar 

  11. Yang C. H., Williams J. M., Org. Lett., 2004, 6(17), 2837

    Article  CAS  Google Scholar 

  12. Cristau H. J., Ouali A., Spindler J. F., Taillefer M., Chem. Eur. J., 2005, 11(8), 2483

    Article  CAS  Google Scholar 

  13. Mariampillai B., Alliot J., Li M. Z., Lautens M., J. Am. Chem. Soc., 2007, 129(49), 15372

    Article  CAS  Google Scholar 

  14. Wang D. P., Kuang L. P., Li Z. W., Ding K., Synlett., 2008, (1), 69

    Google Scholar 

  15. Anbarasan P., Schareina T., Beller M., Chem. Soc. Rev., 2011, 40(10), 5049

    Article  CAS  Google Scholar 

  16. Ushkov A. V., Grushin V. V., J. Am. Chem. Soc., 2011, 133(28), 10999

    Article  CAS  Google Scholar 

  17. Yan G., Yu J., Zhang L., Chin. J. Org. Chem., 2012, 32(2), 294

    Article  CAS  Google Scholar 

  18. Shim Y. J., Lee H. J., Park S., J. Organomet. Chem., 2012, 696(26), 4173

    Article  CAS  Google Scholar 

  19. Magnus P., Scott D. A., Fielding M. R., Tetrahedron Lett., 2001, 42(25), 4127

    Article  CAS  Google Scholar 

  20. Smith M. B., March J., March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; 6th Ed., Wiley, Hoboken, NJ, 2007

    Google Scholar 

  21. Wen Q. D., Jin J. S., Zhang L. P., Luo Y., Lu P., Wang Y. G., Tetrahedron Lett., 2014, 55(7), 1271

    Article  CAS  Google Scholar 

  22. Fan Q. H., Ni N. T., Li Q., Zhang L. H., Ye X. S., Org. Lett., 2006, 6(5), 1007

    Article  Google Scholar 

  23. Naoshi M., Hideo T., Synlett., 2005, 36(9), 1456

    Google Scholar 

  24. Iida S., Togo H., Tetrahedron, 2007, 63(34), 8274

    Article  CAS  Google Scholar 

  25. Ren Y. M., Zhu Y. Z., Cai C., J. Chem. Res., 2008, (1), 18

    Article  Google Scholar 

  26. Zhu C. J., Sun C. G., Wei Y. Y., Synthesis, 2010, (24), 4235

    Google Scholar 

  27. Hiroyuki S., Katsuhiko M., Hideo T., Synthesis, 2013, 45(15), 2155

    Article  Google Scholar 

  28. Ishida T., Watanabeb H., Takei T., Hamasakia A., Tokunaga M., Haruta M., Appl. Catal. A: Gen., 2012, 425(3), 85

    Article  Google Scholar 

  29. Reddy K. R., Maheswari C. U., Venkateshwar M., Prashanthi S., Kantam M. L., Tetrahedron Lett., 2009, 50(18), 2050

    Article  Google Scholar 

  30. Shigekazu Y., Yasuyuki Y., Chem. Lett., 1990, (4), 571

    Google Scholar 

  31. Chen F. E., Li Y. Y., Jia H. Q., Synthesis, 2002, (13), 1804

    Article  Google Scholar 

  32. Biondini D., Brinchi L., Germani R., Goracci L., Savelli G., Eur. J. Org. Chem., 2005, (14), 3060

    Article  Google Scholar 

  33. Rokade B. V., Malekar S. K., Prabhu K. R., Chem. Commun., 2012, 48(44), 5506

    Article  CAS  Google Scholar 

  34. Yadav D. K. T., Bhanage B. M., Eur. J. Org. Chem., 2013, 45(45), 5106

    Article  Google Scholar 

  35. Tao C. Z., Liu F., Zhu Y. M., Liu W. W., Cao Z. L., Org. Biomol. Chem., 2013, 11(20), 3349

    Article  CAS  Google Scholar 

  36. Jagadeesh R. V., Junge H., Beller M., Nature Commun., 2014, 5, 4123

    Article  CAS  Google Scholar 

  37. Molla R. A., Ghosh K., Tuhina K., Islam S. M., New J. Chem., 2015, 39(2), 921

    Article  CAS  Google Scholar 

  38. Oishi T., Yamaguchi K., Mizuno N., Angew. Chem. Int. Ed., 2009, 48(52), 6286

    Article  CAS  Google Scholar 

  39. Tan D. W., Xie J. B., Li Q., Li H. X., Li J. C., Li H. Y., Lang J. P., Dalton Trans., 2014, 43(37), 14061

    Article  CAS  Google Scholar 

  40. Xie J. B., Bao J. J., Li H. X., Tan D. W., Li H. Y., Lang J. P., RSC Adv., 2014, 4(96), 54007

    Article  CAS  Google Scholar 

  41. Dornan L. M., Cao Q., Flanagan J. C. A., Crawford J. J., Cook M. J., Muldoon M. J., Chem. Commun., 2013, 49(54), 6030

    Article  CAS  Google Scholar 

  42. Yin W. Y., Wang C. M., Huang Y., Org. Lett., 2013, 15(8), 1850

    Article  CAS  Google Scholar 

  43. Hoover J. M., Stahl S. S., J. Am. Chem. Soc., 2011, 133(42), 16901

    Article  CAS  Google Scholar 

  44. Hoover J. M., Ryland B. L., Stahl S. S., J. Am. Chem. Soc., 2013, 135(6), 2357

    Article  CAS  Google Scholar 

  45. Hill N. J., Hoover J. M., Stahl S. S., J. Chem. Educ., 2013, 90(1), 102

    Article  CAS  Google Scholar 

  46. Zhang G. F., Han X. W., Luan Y. X., Wang Y., Wen X., Ding C. R., Chem. Commun., 2013, 49(72), 7908

    Article  CAS  Google Scholar 

  47. Zhang G. F., Lei J., Han X. W., Luan Y. X., Ding C. R., Shan S., Synlett., 2015, 26(6), 779

    Article  CAS  Google Scholar 

  48. Saigo K., Kubota N., Takebayashi S., Hasegawa M., Bull. Chem. Soc. Jpn., 1986, 59(3), 931

    Article  CAS  Google Scholar 

  49. Oishi T., Yamaguchi K., Mizuno N., Top. Catal., 2010, 53(7), 479

    Article  CAS  Google Scholar 

  50. Nie R. F., Shi J. J., Xia S. X., Shen L., Chen P., Hou Z. Y., Xiao F. S., J. Mater. Chem., 2012, 22(35), 18115

    Article  CAS  Google Scholar 

  51. Pérez V. T., Arriba A. F. D., Monleón L. M., Simón L., Rubio O. H., Sanz F., Morán J. R., Tetrahedron, 2014, 70(45), 8614

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengrong Ding or Shang Shan.

Additional information

Supported by the National Natural Science Foundation of China(No.20702051) and the Natural Science Foundation of Zhejiang Province, China(No.LY13B020017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhang, G., Lei, J. et al. Aerobic alcohol ammoxidation catalyzed by copper(I)/amino acid: a scalable protocol to nitriles. Chem. Res. Chin. Univ. 32, 586–593 (2016). https://doi.org/10.1007/s40242-016-6067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-6067-9

Keywords

Navigation