Skip to main content
Log in

Experimental binary phase diagram of bilayer compounds [n-C n H2n+1N(CH3)3]2CoCl4

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Compounds [n-C n H2n+1N(CH3)3]2CoCl4(n=16, C16C3Co; n=18, C18C3Co) containing lipid-like bilayers embedded in a crystalline matrix exist in solid-solid phase transition. The low-temperature bilayer structures of the two compounds were organized by neutralizing CoCl 2−4 with alkylammonium ions. Alkyl chains lay parallel to each other and slightly tilted with respect to the normal of the inorganic layers. The adjacent alkyl chains interacted with each other by van der Waals interaction. When the temperature increased, the two compounds underwent a reversible solid-solid phase transformation within 310–330 K. In such a case, the chains showed a large motional freedom, and a disordered phase appeared. The structures can alternatively be viewed as a double layer of alkylammonium ions between CoCl 2−4 sheets and be considered as crystalline models of lipid bilayers. The experimental subsolidus binary phase diagram of [n-C16H33N(CH3)3]2CoCl4-[n-C18H37N(CH3)3]2CoCl4 was constructed over the entire composition range by differential scanning calorimetry and X-ray diffraction technique. Experimental phase diagram indicates one stable intermediate phase [n-C16H33N(CH3)3][n-C18H37N(CH3)3]CoCl4 at \(w_{C_{16} C_3 Co} = 39.89\%\) and two invariant three-phase equilibria, which shows two eutectoid temperature e1 at (316±1) K for \(w_{C_{16} C_3 Co} = 27.35\%\) and e2 at (313±1) K for \(w_{C_{16} C_3 Co} = 59.76\%\). These three noticeable solid-solution ranges are α-phase at the left, β-phase at the right, and γ-phase in the middle of the phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blachnik R., Siethoff C., Thermochim. Acta, 1996, 278, 39

    Article  CAS  Google Scholar 

  2. Needham G. F., Willett R. D., J. Phys. Chem., 1984, 88, 674

    Article  CAS  Google Scholar 

  3. Li Y., Du N., Hou W. G., Liu S. J., Chem. Res. Chinese Universities, 2014, 30(1), 137

    Article  Google Scholar 

  4. Cui W. Z., Wu K. Z., Li X. D., Wen L. Q., Ren B. Y., Thermochim. Acta, 2011, 521, 80

    Article  CAS  Google Scholar 

  5. Mostafan M. F., El-khiyami S. S., J. Solid State Chem., 2014, 209, 82

    Article  Google Scholar 

  6. Ruan B., Wu K. Z., Chen J., Xiong Y. Y., Ren B. Y., Sci. China Chem., 2014, 57(12), 1703

    Article  CAS  Google Scholar 

  7. Almirante C., Minoni G., Zerbi G., J. Phys. Chem., 1986, 90, 852

    Article  CAS  Google Scholar 

  8. Li Q. S., He H., Wang J. N., Zheng H., Shi J. G., Li M. Y., Dong W. F., Qi Z. M., Chem. Res. Chinese Universitites, 2014, 30(1), 157

    Article  CAS  Google Scholar 

  9. Zhou X. Y., Jing X. M., Xu D., Yan W. W., Li G. H., Zhang L. R., Chem. Res. Chinese Universitities, 2013, 29(1), 6

    Article  CAS  Google Scholar 

  10. He D. H., Di Y. Y., Tan Z. C., Yi F. F., Dan W. Y., Liu Y. P., Sol. Energ Mat. Sol. Cells, 2011, 95, 2897

    Article  CAS  Google Scholar 

  11. Ruan B., Wu K. Z., Ren B. Y., Han T. C., Liu X. D., Zhang J. J., J. Therm. Anal. Calorim., 2013, 111, 1311

    Article  CAS  Google Scholar 

  12. Caneiro A., Mogni L., Grunbaum N., Prado F., J. Therm. Anal. Calorim., 2011, 104, 781

    Article  CAS  Google Scholar 

  13. Abid H., Samet A., Dammak T., Mlayah A., Hlil E. K., Abid Y., J. Lumin., 2011, 131, 1753

    Article  CAS  Google Scholar 

  14. Gosniowska M., Ciunik Z., Bator G., Jakubas R., Baran J., J. Mol. Struct., 2000, 555, 2435

    Article  Google Scholar 

  15. Liu X. H., Guo H. X., Chem. J. Chinese Universities, 2014, 35(2), 400

    Google Scholar 

  16. Venkataraman N.V., Barman S., Vasudevan S., Ram S., Chem. Phys. Lett., 2002, 358, 139

    Article  CAS  Google Scholar 

  17. Nobuaki K., Masami A., Yoshihisa W., J. Phys. Chem. Solids, 2011, 72, 1467

    Article  Google Scholar 

  18. Needham G. F., Wlllett R. D., J. Phys. Chem., 1981, 85, 3385

    Article  CAS  Google Scholar 

  19. Chen J., Ge L. L., Friberg S. E., Guo R., Colloids Surf. A, 2010, 358, 135

    Article  CAS  Google Scholar 

  20. Ruan D. S., Li W. P., He L. F., Hu Q. H., J. Thermal. Anal., 1995, 45, 235

    Article  CAS  Google Scholar 

  21. Salerno V., Grieco A., Vacatello M., J. Phys. Chem., 1976, 80, 2444

    Article  CAS  Google Scholar 

  22. Rysava N., Fedorov P. P., Barta C., Sobolev B. P., J. Thermal. Anal., 1989, 35, 1493

    Article  CAS  Google Scholar 

  23. Guo L. L., Liu H. X., Dai Y. D., Ouyang S. X., J. Phys. Chem. Solids, 2007, 68, 1663

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Ruan.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21473048, 21246006), the Natural Science Foundation of Hebei Province, China(No.B2012205034) and the Science Foundation of Hebei Normal University, China(Nos.L2011K04, L2013B07).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Sun, X., Ruan, B. et al. Experimental binary phase diagram of bilayer compounds [n-C n H2n+1N(CH3)3]2CoCl4 . Chem. Res. Chin. Univ. 31, 611–614 (2015). https://doi.org/10.1007/s40242-015-4418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-4418-6

Keywords

Navigation