Skip to main content

Advertisement

Log in

Inhibition of Uridine 5′-diphospho-glucuronosyltransferases A10 and B7 by vitamins: insights from in silico and in vitro studies

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Uridine 5′-diphospho-glucuronosyltransferases (UGTs) have been considered as a family of enzymes responsible for the glucuronidation process, a crucial phase II detoxification reaction. Among the various UGT isoforms, UGTs A10 and B7 have garnered significant attention due to their broad substrate specificity and involvement in the metabolism of numerous compounds. Recent studies have suggested that certain vitamins may exert inhibitory effects on UGT activity, thereby influencing the metabolism of drugs, environmental toxins, and endogenous substances, ultimately impacting their biological activities. In the present study, the inhibition potential of vitamins (A, B1, B2, B3, B5, B6, B7, B9, D3, E, and C) on UGT1A10 and UGT2B7 was determined using in silico and in vitro approaches. A 3-dimensional model of UGT1A10 and UGT2B7 enzymes was built using Swiss Model, ITASSER, and ROSETTA and verified using Ramachandran plot and SAVES tools. Molecular docking studies revealed that vitamins interact with UGT1A10 and UGT2B7 enzymes by binding within the active site pocket and interacting with residues. Among all vitamins, the highest binding affinity predicted by molecular docking was − 8.61 kcal/mol with vitamin B1. The in vitro studies results demonstrated the inhibition of the glucuronidation activity of UGTs by vitamins A, B1, B2, B6, B9, C, D, and E, with IC50 values of 3.28 ± 1.07 µg/mL, 24.21 ± 1.11 µg/mL, 3.69 ± 1.02 µg/mL, 23.60 ± 1.08 µg/mL, 6.77 ± 1.08 µg/mL, 83.95 ± 1.09 µg/ml, 3.27 ± 1.13 µg/mL and 3.89 ± 1.12 µg/mL, respectively. These studies provided the valuable insights into the mechanisms underlying drug-vitamins interactions and have the potential to guide personalized medicine approaches, optimizing therapeutic outcomes, and ensuring patient safety. Indeed, further research in the area of UGT (UDP-glucuronosyltransferase) inhibition by vitamins is essential to fully understand the clinical relevance and implications of these interactions. UGTs play a crucial role in the metabolism and elimination of various drugs, toxins, and endogenous compounds in the body. Therefore, any factors that can modulate UGT activity, including vitamins, can have implications for drug metabolism, drug-drug interactions, and overall health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material (data transparency)

These data will be made available to the reviewers and published if the paper is accepted.

Code availability (software application or custom code)

Not applicable.

References

  • Adiji OA, Docampo-Palacios ML, Alvarez-Hernandez A et al (2021) UGT84F9 is the major flavonoid UDP-glucuronosyltransferase in Medicago truncatula. Plant Physiol 185:1617–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audet-Delage Y, Rouleau M, Villeneuve L, Guillemette C (2022) The glycosyltransferase pathway: an integrated analysis of the cell metabolome. Metabolites 12:1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azizi J, Ismail S, Mansor SM (2013) Mitragyna speciosa Korth leaves extracts induced the CYP450 catalyzed aminopyrine-N-demethylase (APND) and UDP-glucuronosyl transferase (UGT) activities in male Sprague-Dawley rat livers. Drug Metabol Drug Interact 28:95–105

    Article  CAS  PubMed  Google Scholar 

  • Bailly C (2021) Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 891:173735

    Article  CAS  PubMed  Google Scholar 

  • Bardhi K, Coates S, Watson CJ, Lazarus P (2022) Cannabinoids and drug metabolizing enzymes: potential for drug-drug interactions and implications for drug safety and efficacy. Expert Rev Clin Pharmacol 15:1443–1460

    Article  CAS  Google Scholar 

  • Brancaccio M, Mennitti C, Cesaro A et al (2022) The biological role of vitamins in athletes’ muscle, heart and microbiota. Int J Environ Res Public Health 19:1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruyère A, Declevès X, Bouzom F et al (2009) Development of an optimized procedure for the preparation of rat intestinal microsomes: comparison of hepatic and intestinal microsomal cytochrome P450 enzyme activities in two rat strains. Xenobiotica 39:22–32

    Article  Google Scholar 

  • Chavda VP, Patel C, Modh D et al (2022) Therapeutic approaches to amyotrophic lateral sclerosis from the lab to the clinic. Curr Drug Metab 23:200–222

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Wang C, Chen F et al (2023) Transcriptomic profiling reveals key genes of halophyte Apocyni Veneti Folium (Apocynum venetum L.) and regulatory mechanism of salt tolerance. J Plant Growth Regul 42:6565–6584

    Article  CAS  Google Scholar 

  • D’Andrea V, Pérez LM, Pozzi EJS (2005) Inhibition of rat liver UDP-glucuronosyltransferase by silymarin and the metabolite silibinin-glucuronide. Life Sci 77:683–692

    Article  PubMed  Google Scholar 

  • Dadwal A, Singh V, Sharma S, Satyanarayana T (2022) Structural aspects of β-glucosidase of Myceliophthora thermophila (MtBgl3c) by homology modelling and molecular docking. J Biomol Struct Dyn 40:5211–5228

    Article  CAS  PubMed  Google Scholar 

  • Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382

    Article  CAS  Google Scholar 

  • de Jesus AN, Coombes G, da Cunha KF et al (2022) In vitro metabolism of the new antifungal dapaconazole using liver microsomes. Drug Metab Pharmacokinet 47:100475

    Article  Google Scholar 

  • Fasco MJ, Silkworth JB, Dunbar DA, Kaminsky LS (1993) Rat small intestinal cytochromes P450 probed by warfarin metabolism. Mol Pharmacol 43:226–233

    CAS  Google Scholar 

  • Gajula SNR, Vora SA, Dikundwar AG, Sonti R (2022) In vitro drug metabolism studies using human liver microsomes. In: Dosage forms. IntechOpen

  • Gregory PA, Lewinsky RH, Gardner-Stephen DA, Mackenzie PI (2004) Regulation of UDP glucuronosyltransferases in the gastrointestinal tract. Toxicol Appl Pharmacol 199:354–363

    Article  CAS  PubMed  Google Scholar 

  • Guo D-D, Liu F, Tu Y-H et al (2016) Expression patterns of three UGT genes in different chemotype safflower lines and under MeJA stimulus revealed their potential role in flavonoid biosynthesis. PLoS One 11:e0158159

    Article  PubMed Central  Google Scholar 

  • Guo F, Zhang L, Feng X, Li C (2021) Plant-derived UDP-glycosyltransferase and its molecular modification. China Biotechnol 41:78–91

    CAS  Google Scholar 

  • Hanna M, Jaqua E, Nguyen V, Clay J (2022) Vitamins: functions and uses in medicine. Perm J 26:89–97

    Article  PubMed Central  Google Scholar 

  • Hillisch A, Pineda LF, Hilgenfeld R (2004) Utility of homology models in the drug discovery process. Drug Discov Today 9:659–669

    Article  CAS  PubMed Central  Google Scholar 

  • Ikushiro S, Emi Y, Iyanagi T (1995) Identification and analysis of drug-responsive expression of UDP-glucuronosyltransferase family 1 (UGT1) isozyme in rat hepatic microsomes using anti-peptide antibodies. Arch Biochem Biophys 324:267–272

    Article  CAS  PubMed  Google Scholar 

  • Jade D, Gupta S, Mohan S et al (2023) Homology modelling and molecular simulation approach to prediction of B-cell and T-cell epitopes in an OMP25 peptide vaccine against Brucella abortus. Mol Simul 49:441–452

    Article  CAS  Google Scholar 

  • Jiang Z, Gao H, Liu R et al (2022) Key glycosyltransferase genes of Panax notoginseng: identification and engineering yeast construction of rare ginsenosides. ACS Synth Biol 11:2394–2404

    Article  CAS  Google Scholar 

  • Kaminsky LS, Fasco MJ (1992) Small intestinal cytochromes P450. Crit Rev Toxicol 21:407–422

    Article  CAS  Google Scholar 

  • Kumar RR, Singh L, Thakur A et al (2022) Role of vitamins in neurodegenerative diseases: a review. CNS Neurol Disord Drug Targets Former Curr Drug Targets CNS Neurol Disord 21:766–773

    CAS  Google Scholar 

  • Li J, Qu G, Shang N et al (2021) Near-perfect control of the regioselective glucosylation enabled by rational design of glycosyltransferases. Green Synth Catal 2:45–53

    Article  Google Scholar 

  • Li X, Wang C, Chen J et al (2022a) Potential interactions among myricetin and dietary flavonols through the inhibition of human UDP-glucuronosyltransferase in vitro. Toxicol Lett 358:40–47

    Article  CAS  PubMed  Google Scholar 

  • Li J, Mu S, Yang J et al (2022b) Glycosyltransferase engineering and multi-glycosylation routes development facilitating synthesis of high-intensity sweetener mogrosides. Iscience 25:105222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Cao Y-F, Dong P-P et al (2017) The inhibition of UDP-glucuronosyltransferases (UGTs) by vitamin A. Xenobiotica 47:376–381

    Article  CAS  PubMed  Google Scholar 

  • Lohning AE, Levonis SM, Williams-Noonan B, Schweiker SS (2017) A practical guide to molecular docking and homology modelling for medicinal chemists. Curr Top Med Chem 17:2023–2040

    Article  CAS  Google Scholar 

  • Luquita MG, Pozzi EJS, Catania VA, Mottino AD (1994) Analysis of p-nitrophenol glucuronidation in hepatic microsomes from lactating rats. Biochem Pharmacol 47:1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Nomura Y, Seki H, Suzuki T et al (2019) Functional specialization of UDP-glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin. Plant J 99:1127–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda S, Fukami T, Yokoi T, Nakajima M (2015) A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 30:30–51

    Article  CAS  Google Scholar 

  • Oeren M, Walton PJ, Suri J et al (2022) Predicting regioselectivity of AO, CYP, FMO, and UGT metabolism using quantum mechanical simulations and machine learning. J Med Chem 65:14066–14081

    Article  CAS  PubMed  Google Scholar 

  • Pande S, Patel C, Sarkar D, Acharya S (2021) Lactobacillus rhamnosus UBLR-58 and diclofenac potentiate the anti-Alzheimer activity of curcumin in mice. Curr Enzyme Inhib 17:49–56

    Article  CAS  Google Scholar 

  • Patel C, Pande S, Acharya S (2020) Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch Pharmacol 393:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Patel C, Pande S, Sagathia V et al (2023a) Nanocarriers for the delivery of neuroprotective agents in the treatment of ocular neurodegenerative diseases. Pharmaceutics 15:837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel CA, Pande S, Shukla P et al (2023b) Antimalarial drug resistance: trends, mechanisms, and strategies to combat antimalarial resistance. In: Shegokar R, Pathak Y (eds) Malarial drug delivery systems: advances in treatment of infectious diseases. Springer, Cham, pp 43–69

    Book  Google Scholar 

  • Picard N, Ratanasavanh D, Prémaud A et al (2005) Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos 33:139–146

    Article  CAS  PubMed  Google Scholar 

  • Pisoschi AM, Pop A, Iordache F et al (2022) Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 232:114175

    Article  CAS  PubMed Central  Google Scholar 

  • Pitman MR, Menz RI (2006) Methods for protein homology modelling. In: Arora KD, Berka RM, Singh GB (ed) Applied mycology and biotechnology. Elsevier, pp 37–59

  • Pop TL, Sîrbe C, Benţa G et al (2022) The role of vitamin D and vitamin D binding protein in chronic liver diseases. Int J Mol Sci 23:10705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi D, Li H, Liang C et al (2023) Herb-drug interaction of Xingnaojing injection and Edaravone via pharmacokinetics, mixed inhibition of UGTs, and molecular docking. Phytomedicine 112:154696

    Article  CAS  PubMed  Google Scholar 

  • Sabale VB, Ingale AG (2016) Homology modelling and docking studies of 3-oxoacyl synthase II protein of Neisseria meningitidis. Int J Sci Eng Res 7:1564–1572

    Google Scholar 

  • Samanta P, Doerksen RJ (2023) Identifying FmlH lectin-binding small molecules for the prevention of Escherichia coli-induced urinary tract infections using hybrid fragment-based design and molecular docking. Comput Biol Med 163:107072

    Article  CAS  Google Scholar 

  • Santos PM, Sá-Correia I (2007) Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1. J Biotechnol 131:371–378

    Article  CAS  PubMed  Google Scholar 

  • Shahzan MS, Girija AS, Priyadharsini JV (2019) A computational study targeting the mutated L321F of ERG11 gene in C. albicans, associated with fluconazole resistance with bioactive compounds from Acacia nilotica. J Mycol Médicale 29:303–309

    Article  Google Scholar 

  • Shan L, Shi X, Hu T et al (2022) In vitro differences in toddalolactone metabolism in various species and its effect on cytochrome P450 expression. Pharm Biol 60:1591–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Rawat V, Suresh C (2014a) Genome-wide identification and tissue-specific expression analysis of UDP-glycosyltransferases genes confirm their abundance in Cicer arietinum (Chickpea) genome. PLoS One 9:e109715

    Article  PubMed Central  Google Scholar 

  • Sharma R, Panigrahi P, Suresh C (2014b) In-Silico analysis of binding site features and substrate selectivity in plant flavonoid-3-O glycosyltransferases (F3GT) through molecular modeling, docking and dynamics simulation studies. PLoS One 9:e92636

    Article  PubMed Central  Google Scholar 

  • Sill JM, Fear EC (2005) Tissue sensing adaptive radar for breast cancer detection—experimental investigation of simple tumor models. IEEE Trans Microw Theory Tech 53:3312–3319

    Article  Google Scholar 

  • Soars MG, Petullo DM, Eckstein JA et al (2004) An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos 32:140–148

    Article  CAS  PubMed  Google Scholar 

  • Tripathi SP, Prajapati R, Verma N, Sangamwar AT (2016) Predicting substrate selectivity between UGT1A9 and UGT1A10 using molecular modelling and molecular dynamics approach. Mol Simul 42:270–288

    Article  CAS  Google Scholar 

  • Weiser MM (1973) Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem 248:2536–2541

    Article  CAS  PubMed  Google Scholar 

  • Wells PG, Mackenzie PI, Chowdhury JR et al (2004) Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab Dispos 32:281–290

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Wang L, Liu X et al (2023) Vitamin C promoted refractory organic contaminant elimination in the zero-valent iron/peracetic acid system: efficiency, mechanism and effects of various parameters. Chemosphere 326:138481

    Article  CAS  Google Scholar 

  • Zhai X-F, Yi Y, Yu R et al (2022) Rational design of a highly selective UGT1A1 probe and its application in drug discovery. Sens Actuators B Chem 364:131826

    Article  CAS  Google Scholar 

  • Zhang QY, Wikoff J, Dunbar D, Kaminsky L (1996) Characterization of rat small intestinal cytochrome P450 composition and inducibility. Drug Metab Dispos Biol Fate Chem 24:322–328

    CAS  PubMed  Google Scholar 

  • Zhang D, Chando TJ, Everett DW et al (2005) In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos 33:1729–1739

    Article  CAS  Google Scholar 

  • Zhang L, Zhang Y, Zhao P, Huang S-M (2009) Predicting drug–drug interactions: an FDA perspective. AAPS J 11:300–306

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou J, Tracy TS, Remmel RP (2010) Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1. Drug Metab Dispos 38:1907–1911

    Article  CAS  PubMed Central  Google Scholar 

  • Zoghlami M, Oueslati M, Basharat Z et al (2023) Inhibitor assessment against the LpxC enzyme of antibiotic-resistant Acinetobacter baumannii using virtual screening, dynamics simulation, and in vitro assays. Mol Inform 42:2200061

    Article  CAS  Google Scholar 

  • Zulkiffli MH, Salleh NM, Mahmud R, Ismail S (2019) Inhibitory effects of Ficus deltoidea extracts on UDP-glucuronosyltransferase and glutathione S-transferase drug-metabolizing enzymes. Pharmacogn Res 11:210–218

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Chirag A. Patel.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

IAEC approval granted to conduct research study (LMCP/IAEC/2200/25E).

Consent to participate

Not applicable.

Consent for publication

Authors give consent for information to be published in the Journal of Computer-Aided Molecular Design.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pande, S., Patel, C.A., Dhameliya, T.M. et al. Inhibition of Uridine 5′-diphospho-glucuronosyltransferases A10 and B7 by vitamins: insights from in silico and in vitro studies. In Silico Pharmacol. 12, 8 (2024). https://doi.org/10.1007/s40203-023-00182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-023-00182-0

Keywords

Navigation