Skip to main content
Log in

Impact of soil treatment with Nitrilo Triacetic Acid (NTA) on Cd fractionation and microbial biomass in cultivated and uncultivated calcareous soil

  • Research Article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the effectiveness of nitrilotriacetic acid (NTA) on cadmium (Cd) fractions and microbial biomass in a calcareous soil spiked with Cd under cultivated (Zea mays L.) and uncultivated regime subject to soil leaching condition. Expanding investigations related to soil–plant interactions on metal-contaminated soils with insights on microbial activity and associated soil toxicity perspective provides novel perspectives on using metal-chelating agents for soil remediation.

Methods

The experimental factors were three levels of Cd contamination (0, 25, and 50 mg kg−1 soil) and three levels of NTA (0, 15, and 30 mmol L−1) in loamy soil under maize-cultured and non-cultured conditions. During the experiment, the adding NTA and leaching processes were performed three times.

Results

The results showed that the amount of leached Cd decreased in cultivated soil compared to uncultivated soil due to partial uptake of soluble Cd by plant roots and changes in Cd fractions in soil, so that Cd leached in Cd50NTA30 was 9.2 and 6.1 mg L−1, respectively, in uncultivated and cultivated soils. Also, Cd leached in Cd25NTA30 was 5.7 and 3.1 mg L−1 respectively, in uncultivated and cultivated soils. The best treatment in terms of chemical and microbial characteristics of the soil with the high percentage of Cd removed from the soil was Cd25NTA30 in cultivated soil. In Cd25NTA30 compared to Cd25NTA0 in cultivated soil, pH (0.25 unit), microbial biomass carbon (MBC, 65.0 mg kg−1), and soil respiration (27.5 mg C-CO2 kg−1 24 h−1) decreased, while metabolic quotient (qCO2, 0.05) and dissolved organic carbon (DOC, 20.0 mg L−1) increased. Moreover, the changes of Cd fractions in Cd25NTA30 in cultivated soil compared to uncultivated soil were as follows; the exchangeable Cd (F1, 0.27 mg kg−1) and Fe/Mn-oxide-bounded Cd (F4, 0.15 mg kg−1) fractions increased, in contrast, carbonate-Cd (F2, 2.67 mg kg−1) and, organically bounded Cd (F3, 0.06 mg kg−1) fractions decreased. NTA had no significant effect on the residual fraction (F5).

Conclusion

The use of NTA, especially in calcareous soils, where most of the Cd is bound to calcium carbonate, was able to successfully convert insoluble fractions of Cd into soluble forms and increase the removal efficiency of Cd in the phytoremediation method. NTA is a non-toxic chelating agent to improve the accumulation of Cd in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials will be available from the corresponding author on reasonable request.

References

  1. Chamannejadian A, Sayyad G, Moezzi A, Jahangiri A. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils. Iran J Environ Health Sci Eng. 2013;10(1):1–5.

    Article  Google Scholar 

  2. Huang X, Duan S, Wu Q, Yu M, Shabala S. Reducing cadmium accumulation in plants: structure–function relations and tissue-specific operation of transporters in the spotlight. Plants. 2020;9(2):223.

    Article  CAS  Google Scholar 

  3. Xie H, Ma Y, Wang Y, Sun F, Liu R, Liu X, et al. Biological response and phytoremediation of perennial ryegrass to halogenated flame retardants and Cd in contaminated soils. J Environ Chem Eng. 2021;9(6):106526.

    Article  CAS  Google Scholar 

  4. Xie X, Yang S, Liu H, Pi K, Wang Y. The behavior of cadmium leaching from contaminated soil by nitrilotriacetic acid: Implication for Cd-contaminated soil remediation. Water Air Soil Pollut. 2020;231(4):1–12.

    Article  Google Scholar 

  5. Bali AS, Sidhu GPS, Kumar V. Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett. 2020;18(4):1243–75.

    Article  CAS  Google Scholar 

  6. Egene CE, Van Poucke R, Ok YS, Meers E, Tack F. Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. Sci Total Environ. 2018;626:195–202.

    Article  CAS  Google Scholar 

  7. Shaheen SM, Antoniadis V, Kwon EE, Biswas JK, Wang H, Ok YS, et al. Biosolids application affects the competitive sorption and lability of cadmium, copper, nickel, lead, and zinc in fluvial and calcareous soils. Environ Geochem Health. 2017;39(6):1365–79.

    Article  CAS  Google Scholar 

  8. Tavili A, Hassanabadi F, Jafari M, Azarnivand H, Motesharezadeh B, Jahantab E. Phytoremediation ability of H. strobilaceum and S. herbacea around an industrial town. J Environ Health Sci Eng. 2021;19(2):1713–21.

    Article  CAS  Google Scholar 

  9. Van Poucke R, Ainsworth J, Maeseele M, Ok YS, Meers E, Tack F. Chemical stabilization of Cd-contaminated soil using biochar. Appl Geochem. 2018;88:122–30.

    Article  Google Scholar 

  10. Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut. 2011;159(1):84–91.

    Article  CAS  Google Scholar 

  11. Khodaverdiloo H, Han FX, HamzenejadTaghlidabad R, Karimi A, Moradi N, Kazery JA. Potentially toxic element contamination of arid and semi-arid soils and its phytoremediation. Arid Land Res Manag. 2020;34(4):361–91.

    Article  CAS  Google Scholar 

  12. Mehrab N, Chorom M, NorouziMasir M, de Souza MF, Meers E. Alteration in chemical form and subcellular distribution of cadmium in maize (Zea mays L.) after NTA-assisted remediation of a spiked calcareous soil. Arab J Geosci. 2021;14(21):1–14.

    Article  Google Scholar 

  13. Mehrab N, Chorom M, NorouziMasir M, de Souza MF, Meers E. Effect of soil application of biochar produced from Cd-enriched maize on the available Cd in a calcareous soil. Environ Earth Sci. 2022;81(18):1–13.

    Article  Google Scholar 

  14. Cui JL, Luo CL, Tang CWY, Chan TS, Li XD. Speciation and leaching of trace metal contaminants from e-waste contaminated soils. J Hazard Mater. 2017;329:150–8.

    Article  CAS  Google Scholar 

  15. Li T, Di Z, Islam E, Jiang H, Yang X. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. J Hazard Mater. 2011;185(2–3):818–23.

    Article  CAS  Google Scholar 

  16. Zhan J, Li T, Zhang X, Yu H, Zhao L. Rhizosphere characteristics of phytostabilizer Athyrium wardii (Hook.) involved in Cd and Pb accumulation. Ecot Environ Safety. 2018;148:892–900.

    Article  CAS  Google Scholar 

  17. Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health. 2017;14(1):94.

    Article  Google Scholar 

  18. Wang K, Liu Y, Song Z, Wang D, Qiu W. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere. 2019;237:124480.

    Article  CAS  Google Scholar 

  19. Asad SA, Farooq M, Afzal A, West H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment-A review. Chemosphere. 2019;217:925–41.

    Article  CAS  Google Scholar 

  20. Hauptvogl M, Kotrla M, Prčík M, Pauková Ž, Kováčik M, Lošák T. Phytoremediation potential of fast-growing energy plants: challenges and perspectives–a review. Pol J Environ Stud. 2020;29(1):505–16.

    Article  CAS  Google Scholar 

  21. Xiao R, Ali A, Wang P, Li R, Tian X, Zhang Z. Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (Cd) and zinc (Zn) in contaminated soil. Chemosphere. 2019;230:510–8.

    Article  CAS  Google Scholar 

  22. Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, et al. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Env Technol Innov. 2017;8:309–26.

    Article  Google Scholar 

  23. Gabriele I, Race M, Papirio S, Esposito G. Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. J Environ Manage. 2021;293:112805.

    Article  CAS  Google Scholar 

  24. Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-ur-Rehman M, Abbas Z, et al. Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health. 2017;39(2):259–77.

    Article  CAS  Google Scholar 

  25. Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, et al. The use of bio-energy crops (Zea mays) for ‘phytoattenuation’of heavy metals on moderately contaminated soils: a field experiment. Chemosphere. 2010;78(1):35–41.

    Article  CAS  Google Scholar 

  26. Chen L, Yang J-Y, Wang D. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. J Clean Prod. 2020;263:121491.

    Article  CAS  Google Scholar 

  27. Meers E, Lesage E, Lamsal S, Hopgood M, Vervaeke P, Tack F, et al. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int J Phytoremediation. 2005;7(2):129–42.

    Article  CAS  Google Scholar 

  28. Pinto IS, Neto IF, Soares HM. Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review. Environ Sci Pollut Res. 2014;21(20):11893–906.

    Article  CAS  Google Scholar 

  29. Han R, Dai H, Zhan J, Wei S. Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil. J Clean Prod. 2019;239:118055.

    Article  CAS  Google Scholar 

  30. Masoudi F, Shirvani M, Shariatmadari H, Sabzalian MR. Performance of new biodegradable chelants in enhancing phytoextraction of heavy metals from a contaminated calcareous soil. J Environ Health Sci Eng. 2020;18(2):655–64.

    Article  Google Scholar 

  31. Meers E, Hopgood M, Lesage E, Vervaeke P, Tack F, Verloo M. Enhanced phytoextraction: in search of EDTA alternatives. Int J Phytorem. 2004;6(2):95–109.

    Article  CAS  Google Scholar 

  32. Meers E, Ruttens A, Hopgood M, Lesage E, Tack F. Potential of brassic rapa, cannabis sativa, helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere. 2005;61(4):561–72.

    Article  CAS  Google Scholar 

  33. Wang K, Liu Y, Song Z, Khan ZH, Qiu W. Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils. Ecotoxicol Environ Saf. 2019;182:109399.

    Article  CAS  Google Scholar 

  34. Song Y, Ammami M-T, Benamar A, Mezazigh S, Wang H. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ Sci Pollut Res. 2016;23(11):10577–86.

    Article  CAS  Google Scholar 

  35. Bai W. Effects of Application of NTA and EDTA on Accumulation of Soil Heavy Metals in Chrysanthemum. In: IOP Conference Series: Earth and Environmental Science. Harbin, China: IOP Publishing; 2018.

    Google Scholar 

  36. Lan J, Zhang S, Lin H, Li T, Xu X, Li Y, et al. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L grown in Cd-contaminated soils. Chemosphere. 2013;91(9):1362–7.

    Article  CAS  Google Scholar 

  37. Zhou J, Dang Z, Chen N, Xu S, Xie Z. Influence of NTA on accumulation and chemical form of copper and zinc in maize. J Agro-Environ Sci. 2007;26(2):453–7.

    CAS  Google Scholar 

  38. Soleimani M, Hajabbasi MA, Afyuni M, Akbar S, Jensen JK, Holm PE, et al. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal–polluted soil. J Environ Qual. 2010;39(3):855–62.

    Article  CAS  Google Scholar 

  39. Sharma P, Rathee S, Ahmad M, Raina R, Batish DR, Singh HP. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Solanum nigrum. Int J Phytoremed. 2022;20:1–10.

    Google Scholar 

  40. Hai NNS, Sanderson P, Qi F, Du J, Nong NN, Bolan N, et al. Effects of chelates (EDTA, EDDS, NTA) on phytoavailability of heavy metals (As, Cd, Cu, Pb, Zn) using ryegrass (Lolium multiflorum Lam.). Environ Sci Pollut Res. 2022;29(28):42102–16.

    Article  CAS  Google Scholar 

  41. Yanai J, Zhao F-J, McGrath SP, Kosaki T. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ Pollut. 2006;139(1):167–75.

    Article  CAS  Google Scholar 

  42. Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 1978;42(3):421–8.

    Article  CAS  Google Scholar 

  43. Gapta P. Soil, plant, water, and fertilizer analysis. 2nd ed. New Dehli, India: Agrobios; 2000.

    Google Scholar 

  44. Tessier A, Campbell PG, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844–51.

    Article  CAS  Google Scholar 

  45. Mohsenzadeh F, Mohammadzadeh R. Phytoremediation ability of the new heavy metal accumulator plants. Environ Eng Geosci. 2018;24(4):441–50.

    Article  Google Scholar 

  46. Hesami R, Salimi A, Ghaderian SM. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine. Iran Environ Sci Pollut Res. 2018;25(9):8701–14.

    Article  CAS  Google Scholar 

  47. Bayouli IT, Gómez-Gómez B, Bayouli HT, Pérez-Corona T, Meers E, Ammar E, et al. Heavy metal transport and fate in soil-plant system: study case of industrial cement vicinity. Tunis Arab J Geosci. 2020;13(2):1–11.

    Google Scholar 

  48. de Santiago-Martín A, Valverde-Asenjo I, Quintana JR, Vázquez A, Lafuente AL, González-Huecas C. Carbonate, organic and clay fractions determine metal bioavailability in periurban calcareous agricultural soils in the Mediterranean area. Geoderma. 2014;221:103–12.

    Article  Google Scholar 

  49. Wenger K, Kayser A, Gupta S, Furrer G, Schulin R. Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil Sediment Contam. 2002;11(5):655–72.

    Article  CAS  Google Scholar 

  50. Zhang L, Zhang L, Song F. Cadmium uptake and distribution by different maize genotypes in maturing stage. Commun Soil Sci Plant Anal. 2008;39(9–10):1517–31.

    Article  CAS  Google Scholar 

  51. Rayment G, Higginson FR. Australian laboratory handbook of soil and water chemical methods. Melbourne, Australia: Inkata Press Pty Ltd; 1992.

    Google Scholar 

  52. Herbert BE, Bertsch PM. Characterization of dissolved and colloidal organic matter in soil solution: a review. In: William W, McFee J, Kelly M, editors. Carbon forms and functions in forest soils. Madison: Soil Science Society of America, American Society of Agronomy; 1995. p. 63–88.

    Google Scholar 

  53. Jenkinson DS, Ladd J. Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN, editors. Soil biochemistry. New York: Marcel Dekker; 1981. p. 415–71.

    Google Scholar 

  54. Anderson JPE. Soil respiration. In: Page AL, editor. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. Madison, Wisconsin: American Society Agronomy and Soil Science Society America; 1982. p. 831–71.

    Google Scholar 

  55. Meyer K, Joergensen RG, Meyer B. The effects of reduced tillage on microbial biomass C and P in sandy loess soils. Appl Soil Ecol. 1997;5(1):71–9.

    Article  Google Scholar 

  56. Zhang M, Zhang H. Co-transport of dissolved organic matter and heavy metals in soils induced by excessive phosphorus applications. J Environ Sci. 2010;22(4):598–606.

    Article  CAS  Google Scholar 

  57. Kim K-R, Owens G, Kwon S-l. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study. J Environ Sci. 2010;22(1):98–105.

    Article  CAS  Google Scholar 

  58. Zhang Y, Huang H, Yu H, Zhan J, Ye D, Zheng Z et al. Nitrilotriacetic acid enhanced lead accumulation in Athyrium wardii (Hook.) Makino by modifying rhizosphere characteristics. Environ Sci Pollut Res. 2021. https://doi.org/10.21203/rs.3.rs-436736/v1

  59. Lapie C, Leglize P, Paris C, Buisson T, Sterckeman T. Profiling of main metabolites in root exudates and mucilage collected from maize submitted to cadmium stress. Environ Sci Pollut Res. 2019;26(17):17520–34.

    Article  CAS  Google Scholar 

  60. Pinto A, Sim Es I, Mota A. Cadmium impact on root exudates of sorghum and maize plants: a speciation study. J Plant Nutr. 2008;31(10):1746–55.

    Article  CAS  Google Scholar 

  61. Li H, Shen J, Zhang F, Clairotte M, Drevon JJ, Le Cadre E, et al. Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant and Soil. 2008;312(1):139–50.

    Article  CAS  Google Scholar 

  62. Kizilkaya R, Aşkin T. Influence of cadmium fractions on microbiological properties in Bafra plain soils. Arch Agron Soil Sci. 2002;48(3):263–72.

    Article  CAS  Google Scholar 

  63. Pineros MA, Shaff JE, Manslank HS, Carvalho Alves VM, Kochian LV. Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol. 2005;137(1):231–41.

    Article  CAS  Google Scholar 

  64. Meers E, Tack F, Verloo M. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation. Chemosphere. 2008;70(3):358–63.

    Article  CAS  Google Scholar 

  65. Usman AR, Almaroai YA, Ahmad M, Vithanage M, Ok YS. Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil. J Hazard Mater. 2013;262:1022–30.

    Article  CAS  Google Scholar 

  66. Suman A, Lal M, Singh A, Gaur A. Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agron J. 2006;98(3):698–704.

    Article  Google Scholar 

  67. Parelho C, Rodrigues A, Barreto M, Ferreira N, Garcia P. Assessing microbial activities in metal contaminated agricultural volcanic soils–an integrative approach. Ecotoxicol Environ Saf. 2016;129:242–9.

    Article  CAS  Google Scholar 

  68. Zhou H, Zhang D, Wang P, Liu X, Cheng K, Li L, et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agr Ecosyst Environ. 2017;239:80–9.

    Article  CAS  Google Scholar 

  69. Xian Y, Wang M, Chen W. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere. 2015;139:604–8.

    Article  CAS  Google Scholar 

  70. Yang L, Wang G, Cheng Z, Liu Y, Shen Z, Luo C. Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure. J Hazard Mater. 2013;262:561–70.

    Article  CAS  Google Scholar 

  71. Meers E, Unamuno V, Vandegehuchte M, Vanbroekhoven K, Geebelen W, Samson R, et al. Soil-solution speciation of Cd as affected by soil characteristics in unpolluted and polluted soils. Environ Toxicol Chem: Int J. 2005;24(3):499–509.

    Article  CAS  Google Scholar 

  72. Yu H-Y, Liu C, Zhu J, Li F, Deng D-M, Wang Q, et al. Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut. 2016;209:38–45.

    Article  CAS  Google Scholar 

  73. Qi F, Lamb D, Naidu R, Bolan NS, Yan Y, Ok YS, et al. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci Total Environ. 2018;610:1457–66.

    Article  Google Scholar 

  74. Maftoun M, Rassooli F, Ali Nejad Z, Karimian N. Cadmium sorption behavior in some highly calcareous soils of Iran. Commun Soil Sci Plant Anal. 2004;35(9–10):1271–82.

    Article  CAS  Google Scholar 

  75. Rajaie M, Karimian N, Maftoun M, Yasrebi J, Assad M. Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time. Geoderma. 2006;136(3–4):533–41.

    Article  CAS  Google Scholar 

  76. Suzuki T, Nakase K, Tamenishi T, Niinae M. Influence of pH and Cations Contained in Rainwater on Leaching of Cd (II) from Artificially Contaminated Montmorillonite. J Environ Chem Eng. 2020;8(5):104080.

    Article  CAS  Google Scholar 

  77. Jalali M, Khanlari ZV. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Arch Environ Contam Toxicol. 2007;53(4):519–32.

    Article  CAS  Google Scholar 

  78. Fan W, Jia Y, Li X, Jiang W, Lu L. Phytoavailability and geospeciation of cadmium in contaminated soil remediated by Rhodobacter sphaeroides. Chemosphere. 2012;88(6):751–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial and scientific support of the Shahid Chamran University of Ahvaz, Iran (Grant No. SCU.AS99.692). The authors also acknowledge the scientific support of the Ghent University of Belgium and the University of Kalyani of India.

Funding

This study was funded by the Research Vice Chancellor of Shahid Chamran University of Ahvaz, Iran (Grant No. SCU.AS99.692).

Author information

Authors and Affiliations

Authors

Contributions

[Narges Mehrab]: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing—Original Draft, Writing—Review & Editing, Project administration; [Mostafa Chorom]: Conceptualization, Resources, Writing—Review & Editing, Supervision, Project administration; [Mojtaba Norouzi Masir]: Writing—Review & Editing; [Jayanta Kumar Biswas]: Writing—Review & Editing; [Marcella Fernandes de Souza]: Writing—Review & Editing, improvement of quality of the manuscript's English language; [Erik Meers]: Writing—Review & Editing.

Corresponding author

Correspondence to Narges Mehrab.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors are fully aware of this submission and have consented to publish the manuscript in this journal.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrab, N., Chorom, M., Norouzi Masir, M. et al. Impact of soil treatment with Nitrilo Triacetic Acid (NTA) on Cd fractionation and microbial biomass in cultivated and uncultivated calcareous soil. J Environ Health Sci Engineer 21, 319–332 (2023). https://doi.org/10.1007/s40201-023-00857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-023-00857-y

Keywords

Navigation