Skip to main content

Advertisement

Log in

A comparative study on antibacterial activity of carvacrol and glutaraldehyde on Pseudomonas aeruginosa and Staphylococcus aureus isolates: an in vitro study

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The resistance of hospital bacterial isolates against traditional germicides, which used frequently, is one of the important factors contributing to emerging nosocomial infections. Moreover, due to having the side effects of chemical substances, the development of novel low-risk natural compounds seems necessary for control the spread of resistant pathogens in hospital environments. The aim of this study was to compare the effect of carvacrol and glutaraldehyde against two common hospital acquired pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus. In this study 365 samples were collected from different wards of hospitals of Khorramabad, Iran. One hundred and sixty samples were identified as P. aeruginosa and S. aureus by using standard microbiological methods. Then the antibacterial effects of four combinations including carvacrol+ethanol, carvacrol+dimethyl sulfoxide (DMSO), glutaraldehyde 2%, and pure glutaraldehyde (50%) were evaluated and determined using dilution broth and disk diffusion methods. Our results showed that the carvacrol had more antibacterial effects against selected bacteria compared to glutaraldehyde. Moreover, the optimal time and concentration of carvacrol+ethanol against hospital isolates of P. aeruginosa and S. aureus was determined after 1 h at concentration of 64 μl/ml and 8 μl/ml, respectively. In conclusion by comparing the results of carvacrol and glutaraldehyde, seem that carvacrol, as an herbal and natural agent, may be a suitable alternative to glutaraldehyde in hospital equipment’s’ sterilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sahlabadi F, Zandi H, Mokhtari M, Jamshidi S, Jasemizad T, Montazeri A, et al. The effectiveness evaluation of current disinfectants on pathogens isolated from surface of different parts of Shahid Sadughi accidents burns Hospital in City of Yazd. J Environ Health Eng. 2016;3(2):93–101.

    Article  Google Scholar 

  2. Schabrun S, Chipchase L. Healthcare equipment as a source of nosocomial infection: a systematic review. J Hosp Infect. 2006;63(3):239–45.

    Article  CAS  Google Scholar 

  3. Ducel G, Fabry J, Nicolle L. Prevention of hospital acquired infections: a practical guide. Prevention of hospital acquired infections: a practical guide. 2002(Ed. 2).

    Google Scholar 

  4. Oliveira PS, Souza SG, Campos GB, da Silva DC, Sousa DS, Araújo SP, et al. Isolation, pathogenicity and disinfection of Staphylococcus aureus carried by insects in two public hospitals of Vitória da Conquista, Bahia, Brazil. Braz J Infect Dis. 2014;18(2):129–36.

    Article  Google Scholar 

  5. Hadadi A, RASOULINEZHAD M, Afhami S, Mohraz M. Epidemiological, clinical, Para clinical aspects of brucellosis in imam Khomeini and Sina Hospital of Tehran (1998–2005). 2006.

    Google Scholar 

  6. Hadizadeh M, Norouzi A, Taghadosi R, Mohebi S, Mohammadi M, Hasanzade A, et al. Prevalence of qnr, intI, and intII genes in extendedspectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from clinical samples in Iran. Trop J Pharm Res. 2017;16(1):141–7.

    Article  CAS  Google Scholar 

  7. Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother. 1992;29(suppl_A):19–24.

    Article  Google Scholar 

  8. Al-Jubory SA, Naher HS, Saleh RH. A study of efficacy of disinfectants and bacterial contamination in Al-Hilla teaching hospital. Med J Babylon. 2012;9(4):890–900.

    Google Scholar 

  9. Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals. 2014;42(1):1–7.

    Article  CAS  Google Scholar 

  10. Manafi A, Kohanteb J, Mehrabani D, Japoni A, Amini M, Naghmachi M, et al. Active immunization using exotoxin a confers protection against Pseudomonas aeruginosa infection in a mouse burn model. BMC Microbiol. 2009;9(1):1–5.

    Article  Google Scholar 

  11. Finck-Barbançon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SM, et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol. 1997;25(3):547–57.

    Article  Google Scholar 

  12. Missiakas DM, Schneewind O. Growth and laboratory maintenance of Staphylococcus aureus. Curr Protoc Microbiol. 2013;28(1):9C. 1–9C. 1.9.

    Article  Google Scholar 

  13. Control CD. Prevention. Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections--Los Angeles County, California, 2002–2003. MMWR Morb Mortal Wkly Rep. 2003;52(5):88.

    Google Scholar 

  14. Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46(Supplement_5):S344–S9.

    Article  Google Scholar 

  15. Rasigade J-P, Vandenesch F. Staphylococcus aureus: a pathogen with still unresolved issues. Infect Genet Evol. 2014;21:510–4.

    Article  CAS  Google Scholar 

  16. Mihai MM, Holban AM, Giurcaneanu C, Popa LG, Buzea M, Filipov M, et al. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom J Morphol Embryol. 2014;55:1401–8.

  17. Gebreyesus A, Gebre-Selassie S, Mihert A. Nasal and hand carriage rate of methicillin resistant Staphylococcus aureus (MRSA) among health care workers in Mekelle hospital, North Ethiopia. Ethiop Med J. 2013;51(1):41–7.

    Google Scholar 

  18. Khalafi T, Mohebbi SR, Moradi F, Khanipour F, Mahmoudian R, Montaseri M, et al. The trend of antibiotic resistance of Staphylococcus aureus isolated in clinical specimens in a referral hospital Shahid mohammadi hospital at Bandar abbas, south of Iran (2009-2014). Int Electron J Med. 2017;6(2):53–7.

    Google Scholar 

  19. Zschöck M, El-Sayed A, Eissa N, Lämmler C, Castañeda-Vazquez H. Resistencia a penicilina G y oxacilina, de cepas de Staphylococcus aureus aisladas de mastitis bovina subclínica. Vet Méx. 2011;42(3):207–17.

    Google Scholar 

  20. Velazquez-Meza ME, Hernández-Salgado M, Sánchez-Alemán MA. Evaluation of the antimicrobial activity of a super oxidized solution in clinical isolates. Microb Drug Resist. 2015;21(4):367–72.

    Article  Google Scholar 

  21. Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, et al. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 2007;56(4):519–23.

    Article  CAS  Google Scholar 

  22. Bagamboula C, Uyttendaele M, Debevere J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 2004;21(1):33–42.

    Article  CAS  Google Scholar 

  23. Liang WZ, Lu CH. Carvacrol-induced [Ca2+] i rise and apoptosis in human glioblastoma cells. Life Sci. 2012;90(17–18):703–11.

    Article  CAS  Google Scholar 

  24. Arunasree K. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine. 2010;17(8–9):581–8.

    Article  CAS  Google Scholar 

  25. Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol. 2008;47(3):174–9.

    Article  CAS  Google Scholar 

  26. Marinelli L, Di Stefano A, Cacciatore I. Carvacrol and its derivatives as antibacterial agents. Phytochem Rev. 2018;17(4):903–21.

    Article  Google Scholar 

  27. Magi G, Marini E, Facinelli B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant group a streptococci. Front Microbiol. 2015;6:165.

    Article  Google Scholar 

  28. Kachur K, Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr. 2020;60(18):3042–53.

  29. Memar MY, Raei P, Alizadeh N, Aghdam MA, Kafil HS. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Rev Med Microbiol. 2017;28(2):63–8.

    Article  Google Scholar 

  30. Chavan PS, Tupe SG. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control. 2014;46:115–20.

    Article  CAS  Google Scholar 

  31. Nobrega RO, Teixeira APdC, Oliveira WAd, Lima EdO, Lima IO. Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans. Pharm Biol. 2016;54(11):2591–6.

    Article  CAS  Google Scholar 

  32. Park J-H, Jeon Y-J, Lee C-H, Chung N, Lee H-S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci Rep. 2017;7:40902.

    Article  CAS  Google Scholar 

  33. Herruzo-Cabrera R, Uriarte M, Rey-Calero J. Antimicrobial effectiveness of 2% glutaraldehyde versus other disinfectants for hospital equipment, in an in vitro test based on germ-carriers with a high microbial contamination. Rev Stomatol Chir Maxillofac. 1999;100(6):299.

    CAS  Google Scholar 

  34. Henn SA, Boiano JM, Steege AL. Precautionary practices of healthcare workers who disinfect medical and dental devices using high-level disinfectants. Infect Control Hosp Epidemiol. 2015;36(2):180–5.

    Article  Google Scholar 

  35. Liolios C, Gortzi O, Lalas S, Tsaknis J, Chinou I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 2009;112(1):77–83.

    Article  CAS  Google Scholar 

  36. McGucken PV, Woodside W. Studies on the mode of action of glutaraldehyde on Escherichia coli. J Appl Bacteriol. 1973;36(3):419–26.

    Article  CAS  Google Scholar 

  37. Pol IE, Krommer J, Smid EJ. Bioenergetic consequences of nisin combined with carvacrol towards Bacillus cereus. Innovative Food Sci Emerg Technol. 2002;3(1):55–61.

    Article  CAS  Google Scholar 

  38. Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol. 2006;43(2):149–54.

    Article  CAS  Google Scholar 

  39. Clinical, Institute LS. Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.

    Google Scholar 

  40. Bayer A, Kirby W, Sherris J, Turck M. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966;45(4):493–6.

    Article  Google Scholar 

  41. May J, Chan C, King A, Williams L, French G. Time–kill studies of tea tree oils on clinical isolates. J Antimicrob Chemother. 2000;45(5):639–43.

    Article  CAS  Google Scholar 

  42. Saccucci M, Bruni E, Uccelletti D, Bregnocchi A, Sarto MS, Bossù M, et al. Surface disinfections: present and future. J Nanomater. 2018;2018:8950143.

    Article  Google Scholar 

  43. Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar CM, et al. Carvacrol and human health: a comprehensive review. Phytother Res. 2018;32(9):1675–87.

    Article  CAS  Google Scholar 

  44. Quintas V, Prada-López I, Carreira MJ, Suárez-Quintanilla D, Balsa-Castro C, Tomás I. In Situ Antibacterial Activity of Essential Oils with and without Alcohol on Oral Biofilm: A Randomized Clinical Trial. Front Microbiol. 2017;8:2162.

    Article  Google Scholar 

  45. Heinzel M. Phenomena of biocide resistance in microorganisms. Int Biodeterior Biodegradation. 1998;41(3):225–34.

    Article  CAS  Google Scholar 

  46. Khan I, Bahuguna A, Kumar P, Bajpai VK, Kang SC. Antimicrobial potential of carvacrol against uropathogenic Escherichia coli via membrane disruption, depolarization, and reactive oxygen species generation. Front Microbiol. 2017;8(2421):1–9.

Download references

Acknowledgements

The authors would like to gratefully appreciate the Lorestan University of Medical Sciences and the khorramman pharmaceutical company, Khorramabad- Iran, for financially supporting this work under grant P/15/1190.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohsen Mohammadi or Bahram Kamarehie.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanvand, T., Mohammadi, M., Abdollahpour, F. et al. A comparative study on antibacterial activity of carvacrol and glutaraldehyde on Pseudomonas aeruginosa and Staphylococcus aureus isolates: an in vitro study. J Environ Health Sci Engineer 19, 475–482 (2021). https://doi.org/10.1007/s40201-021-00620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00620-1

Keywords

Navigation