Skip to main content
Log in

Efficient degradation of microcystin-LR by BiVO4/TiO2 photocatalytic nanocomposite under visible light

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Microcystin-Leucine Arginine (MC-LR) is one of the most studied cyanotoxins due to its toxicity and abundant that cause health hazards for humans through of the drinking water. In this study, BiVO4/TiO2 nanocomposite was synthesized by hydrothermal method and employed for the removal of MC-LR. The characteristics of the catalysts were determined by FESEM, XRD and FTIR spectra. Response surface methodology (RSM) was applied to assess the effects of operating variables (pH, contact time, and catalyst dose) on the MC-LR removal. The coefficient of determination (R2) was calculated 98.7% for the response. The residual concentration of MC-LR was measured by high-performance liquid chromatography (HPLC). The results show that the highest removal efficiency of MC-LR was 98% under the optimum conditions (pH = 5, contact time = 90 min, and catalyst dose = 0.5 g/l). MC-LR decomposition efficiency by BiVO4/TiO2 nanocomposite was enhanced by pH reduction and increasing of contact time and catalyst dose. The prepared BiVO4/TiO2 nanocomposite with technological potential can be used directly in environmental preservation, specifically in the decontamination of MC-LR from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu L, Huang Q, Qin B. Characteristics and roles of Microcystis extracellular polymeric substances (EPS) in cyanobacterial blooms: a short review. J Freshw Ecol. 2018;33(1):183–93.

    Article  CAS  Google Scholar 

  2. Shamsollahi HR, Alimohammadi M, Nabizadeh R, Nazmara S, Mahvi AH. Monitoring of microcystin-LR concentration in water reservoir. Desalin Water Treat. 2018;126:345–9.

    Article  CAS  Google Scholar 

  3. Sharma VK, Chen L, Marsalek B, Zboril R, O'Shea KE, Dionysiou DD. Iron based sustainable greener technologies to treat cyanobacteria and microcystin-LR in water. Water Sci Tech-W Sup. 2016;17(1):107–14.

    Article  CAS  Google Scholar 

  4. Sorlini S, Gialdini F, Collivignarelli C. Removal of cyanobacterial cells and microcystin-LR from drinking water using a hollow fiber microfiltration pilot plant. Desalination. 2013;309:106–12.

    Article  CAS  Google Scholar 

  5. Jaša L, Sadílek J, Kohoutek J, Straková L, Maršálek B, Babica P. Application of passive sampling for sensitive time-integrative monitoring of cyanobacterial toxins microcystins in drinking water treatment plants. Water Res. 2019;153:108–20.

    Article  CAS  Google Scholar 

  6. Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci. 2010;11(1):268–87.

    Article  CAS  Google Scholar 

  7. Shamsollahi HR, Alimohammadi M, Nabizadeh R, Nazmara S, Mahvi AH. Measurement of microcystin-LR in water samples using improved HPLC method. Glob J Health Sci. 2015;7(2):66.

    Google Scholar 

  8. Janssen EM-L. Cyanobacterial peptides beyond microcystins–a review on co-occurrence, toxicity, and challenges for risk assessment. Water Res. 2019;151:488–99.

    Article  CAS  Google Scholar 

  9. Antoniou MG, De La Cruz AA, Dionysiou DD. Cyanotoxins: New generation of water contaminants. J Environ Eng-ASCE. 2005;131:9.

    Article  CAS  Google Scholar 

  10. Yan H, Gong A, He H, Zhou J, Wei Y, Lv L. Adsorption of microcystins by carbon nanotubes. Chemosphere. 2006;62(1):142–148.11.

    Article  CAS  Google Scholar 

  11. Liu B, Qu F, Chen W, Liang H, Wang T, Cheng X, et al. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe (II), ozone and permanganate: comparison of the simultaneous and successive oxidant dosing strategy. Water Res. 2017;125:72–80.

    Article  CAS  Google Scholar 

  12. Mokoena M, Mukhola M, Okonkwo O. Hazard assessment of microcystins from the household’s drinking water. Appl Ecol Env Res. 2016;14(3):695–710.13.

    Article  Google Scholar 

  13. Pham T-L, Dang TN. Microcystins in freshwater ecosystems: occurrence, distribution, and current treatment approaches. Water and Wastewater Treatment Technologies: Springer; 2019: 15–36.

  14. Roegner AF, Brena B, González-Sapienza G, Puschner B. Microcystins in potable surface waters: toxic effects and removal strategies. J Appl Toxicol. 2014;34(5):441–57.

    Article  CAS  Google Scholar 

  15. Fan J, Ho L, Hobson P, Brookes J. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Res. 2013;47(14):5153–64.

    Article  CAS  Google Scholar 

  16. Fan W, Zhang Q, Wang Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys. 2013;15(8):2632–49.

    Article  CAS  Google Scholar 

  17. Pantelić D, Svirčev Z, Simeunović J, Vidović M, Trajković I. Cyanotoxins: characteristics, production and degradation routes in drinking water treatment with reference to the situation in Serbia. Chemosphere. 2013;91(4):421–41.

    Article  CAS  Google Scholar 

  18. Liu Y, Ren J, Wang X, Fan Z. Mechanism and reaction pathways for microcystin-LR degradation through UV/H2O2 treatment. PLoS One. 2016;11(6):e0156236.

    Article  CAS  Google Scholar 

  19. Karci A, Wurtzler EM, Armah A, Wendell D, Dionysiou DD. Solar photo-Fenton treatment of microcystin-LR in aqueous environment: transformation products and toxicity in different water matrices. J Hazard Mater. 2018;349:282–92.

    Article  CAS  Google Scholar 

  20. Park J-A, Yang B, Park C, Choi J-W, van Genuchten CM, Lee S-H. Oxidation of microcystin-LR by the Fenton process: kinetics, degradation intermediates, water quality and toxicity assessment. Chem Eng. 2017;309:339–48.

    Article  CAS  Google Scholar 

  21. Pinho LX, Azevedo J, Brito Â, Santos A, Tamagnini P, Vilar VJ, et al. Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin. Chem Eng. 2015;268:144–52.

    Article  CAS  Google Scholar 

  22. Miao H-F, Qin F, Tao G-J, Tao W-Y, Ruan W-Q. Detoxification and degradation of microcystin-LR and-RR by ozonation. Chemosphere. 2010;79(4):355–61.

    Article  CAS  Google Scholar 

  23. Song W, De La Cruz AA, Rein K, O'Shea KE. Ultrasonically induced degradation of microcystin-LR and-RR: identification of products, effect of pH, formation and destruction of peroxides. Environ. Sci. Technol. 2006;40(12):3941–6.

    Article  CAS  Google Scholar 

  24. Zong W, Sun F, Sun X. Oxidation by-products formation of microcystin-LR exposed to UV/H2O2: toward the generative mechanism and biological toxicity. Water Res. 2013;47(9):3211–9.

    Article  CAS  Google Scholar 

  25. Kabra K, Chaudhary R, Sawhney RL. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res. 2004;43(24):7683–96.

    Article  CAS  Google Scholar 

  26. Baiju K, Shukla S, Sandhya K, James J, Warrier K. Photocatalytic activity of sol− gel-derived nanocrystalline titania. J Phys Chem C. 2007;111(21):7612–22.

    Article  CAS  Google Scholar 

  27. Choi H, Sofranko AC, Dionysiou DD. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction. Adv Funct Mater. 2006;16(8):1067–74.

    Article  CAS  Google Scholar 

  28. Hirakawa T, Sato K, Komano A, Kishi S, Nishimoto CK, Mera N, et al. Experimental study on adsorption and photocatalytic decomposition of isopropyl methylphosphonofluoridate at surface of TiO2 photocatalyst. J Phys Chem C. 2010;114(5):2305–14.

    Article  CAS  Google Scholar 

  29. Pal S, Laera AM, Licciulli A, Catalano M, Taurino A. Biphase TiO2 microspheres with enhanced photocatalytic activity. Ind Eng Chem Res. 2014;53(19):7931–8.

    Article  CAS  Google Scholar 

  30. Golmojdeh H, Zanjanchi M. A facile approach for synthesis of BiVO4 nanoparticles possessing high surface area and various morphologies. Cryst Res Technol. 2012;47(9):1014–25.

    Article  CAS  Google Scholar 

  31. Kumar SG, Devi LG. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A. 2011;115(46):13211–41.

    Article  CAS  Google Scholar 

  32. Sun J, Li X, Zhao Q, Ke J, Zhang D. Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. J Phys Chem C. 2014;118(19):10113–21.

    Article  CAS  Google Scholar 

  33. Seabold JA, Choi K-S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc. 2012;134(4):2186–92.

    Article  CAS  Google Scholar 

  34. Zhou D, Pang L-X, Guo J, Wang H, Yao X, Randall C. Phase evolution, phase transition, Raman spectra, infrared spectra, and microwave dielectric properties of low temperature firing (K0.5xBi1–0.5x)(MoxV1–x)O4 ceramics with Scheelite related structure. Inorg Chem. 2011;50(24):12733–8.

    Article  CAS  Google Scholar 

  35. Wetchakun N, Chainet S, Phanichphant S, Wetchakun K. Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram Int. 2015;41(4):5999–6004.

    Article  CAS  Google Scholar 

  36. Aslani H, Nabizadeh R, Nasseri S, Mesdaghinia A, Alimohammadi M, Mahvi AH, et al. Application of response surface methodology for modeling and optimization of trichloroacetic acid and turbidity removal using potassium ferrate (VI). Desalin Water Treat. 2016;57(52):25317–28.

    Article  CAS  Google Scholar 

  37. Bussi J, Ohanian M, Vázquez M, Dalchiele EA. Photocatalytic removal of hg from solid wastes of chlor-alkali plant. J Environ Eng. 2002;128(8):733–739.38.

    Article  CAS  Google Scholar 

  38. Huang H, Xiao K, He Y, Zhang T, Dong F, Du X, et al. In situ assembly of BiOI@ Bi12O17Cl2 pn junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl Catal B-Environ. 2016;199:75–86.

    Article  CAS  Google Scholar 

  39. Huang H, He Y, Li X, Li M, Zeng C, Dong F, et al. Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. J Mater Chem A. 2015;3(48):24547–56.

    Article  CAS  Google Scholar 

  40. Huang H, Li X, Wang J, Dong F, Chu PK, Zhang T, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32–doped Bi2O2CO3. ACS Catal. 2015;5(7):4094–103.

    Article  CAS  Google Scholar 

  41. Rajalingam V. Synthesis and characterization of BiVO4 nanostructured materials: application to photocatalysis: Université du Maine; 2014.

  42. Matthiensen A, Beattie KA, Yunes JS, Kaya K, Codd GA. [D-Leu1] microcystin-LR, from the cyanobacterium Microcystis RST 9501 and from a Microcystis bloom in the Patos lagoon estuary, Brazil. Phytochemistry. 2000;55(5):383–7.

    Article  CAS  Google Scholar 

  43. Hu Y, Chen W, Fu J, Ba M, Sun F, Zhang P, et al. Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation. Appl Surf Sci. 2018;436:319–26.

    Article  CAS  Google Scholar 

  44. Rahimi B, Ebrahimi A. Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: optimization by response surface methodology (RSM). J Taiwan Inst Chem E. 2019;101:64–79.

    Article  CAS  Google Scholar 

  45. Mohammadi A, Nemati S, Mosaferi M, Abdollahnejhad A, Almasian M, Sheikhmohammadi A. Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: modeling and optimization. J Contam Hydrol. 2017;203:85–92.

    Article  CAS  Google Scholar 

  46. Venkatachalam N, Palanichamy M, Murugesan V. Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A-Chem. 2007;273(1–2):177–85.

    Article  CAS  Google Scholar 

  47. Nasseri S, Borna MO, Esrafili A, Kalantary RR, Kakavandi B, Sillanpää M, et al. Photocatalytic degradation of malathion using Zn2+−doped TiO2 nanoparticles: statistical analysis and optimization of operating parameters. Appl Phys A Mater Sci Process. 2018;124(2):175.

    Article  CAS  Google Scholar 

  48. Bhatkhande DS, Pangarkar VG, Beenackers AA. Photocatalytic degradation for environmental applications–a review. J ChemTechnol Biotechnol. 2002;77(1):102–16.

    Article  CAS  Google Scholar 

  49. He X, Pelaez M, Westrick JA, O’Shea KE, Hiskia A, Triantis T, et al. Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Res. 2012;46(5):1501–10.

    Article  CAS  Google Scholar 

  50. Mortazavian S, Saber A, James DE. Optimization of Photocatalytic degradation of acid blue 113 and acid red 88 textile dyes in a UV-C/TiO2 suspension system: application of response surface methodology (RSM). Catalysts. 2019;9(4):360.51.

    Article  CAS  Google Scholar 

  51. Rahimi B, Jafari N, Abdolahnejad A, Farrokhzadeh H, Ebrahimi A. Application of efficient photocatalytic process using a novel BiVO/TiO2-NaY zeolite composite for removal of acid orange 10 dye in aqueous solutions: modeling by response surface methodology (RSM). J Environ Chem Eng. 2019;7(4):103253.

    Article  CAS  Google Scholar 

  52. Huang W-J, Cheng B-L, Cheng Y-L. Adsorption of microcystin-LR by three types of activated carbon. J Hazard Mater. 2007;141(1):115–22.

    Article  CAS  Google Scholar 

  53. Lawton LA, Robertson PK, Cornish BJ, Marr IL, Jaspars M. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J Catal. 2003;213(1):109–13.

    Article  CAS  Google Scholar 

  54. Chen P, Zhu L, Fang S, Wang C, Shan G. Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light. Environ Sci Technol. 2012;46(4):2345–51.

    Article  CAS  Google Scholar 

  55. Zhang H, Zhu G, Jia X, Ding Y, Zhang M, Gao Q, et al. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan. J Environ Sci. 2011;23(12):1983–8.

    Article  CAS  Google Scholar 

  56. Liu S, Hu X, Jiang W, Ma L, Cai M, Xu H, et al. Degradation of microcystins from Microcystis aeruginosa by 185-nm UV irradiation. Water Air Soil Pollut. 2016;227(4):129.

    Article  CAS  Google Scholar 

  57. Pavithra KG, Kumar PS, Christopher FC, Saravanan A. Removal of toxic Cr (VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor. J Phys Chem Solids. 2017;110:379–85.

    Article  CAS  Google Scholar 

  58. Huang H, He Y, Du X, Chu PK, Zhang Y. A general and facile approach to heterostructured core/shell BiVO4/BiOI p–n junction: room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustain Chem Eng. 2015;3(12):3262–73.

    Article  CAS  Google Scholar 

  59. Huang H, Xiao K, Zhang T, Dong F, Zhang Y. Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl Catal B-Environ. 2017;203:879–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is a part of a Ph.D. approved research Thesis (No. 395847 and Code of ethics. IR.MUI.REC.1395.3.847) performed at Isfahan University of Medical Sciences, Iran. The authors are thankful for the funding provided by the Department of Environmental Health Engineering and Environment Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Ebrahimi.

Ethics declarations

Conflict of interest

Authors declare in this study has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, N., Ebrahimpour, K., Abdolahnejad, A. et al. Efficient degradation of microcystin-LR by BiVO4/TiO2 photocatalytic nanocomposite under visible light. J Environ Health Sci Engineer 17, 1171–1183 (2019). https://doi.org/10.1007/s40201-019-00432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00432-4

Keywords

Navigation