Skip to main content

Advertisement

Log in

Three candidate SNPs show associations with thyroid-stimulating hormone in euthyroid subjects: Tehran thyroid study

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

Previous studies have shown interindividual variation in free thyroxine (FT4) serum levels and thyroid stimulating hormone (TSH) in healthy persons. Genetic factors mainly determine this variation, and genome-wide association studies have increased the number of thyroid function-associated variants. The present study investigates the association of candidate variants with FT4 and TSH in a euthyroid Iranian population.

Method

A total of 2931 unrelated euthyroid subjects (FT4 10.29–21.88 pmol/L; TSH 0.32–10 mIU/L, thyroid peroxidase antibody TPOAb < 33 IU/mL in men and < 35 IU/mL in women), with available genotypes were chosen from the Tehran Thyroid Study (TTS), to examine the impact of selected SNPs on thyroid hormone under the additive genetic model. In order to evaluate regional associations with FT4 and TSH levels, a haplotype analysis was done.

Results

We identified a strong association between the rs4338740-C allele and TSH in the adjusted model (β = -0.095, P-value = 0.0004). Also, findings indicated that rs4954192 ACMSD and rs4445669 CADM1 correlated with normal TSH levels (P-value = 0.011, P-value = 0.014, respectively). Haplotype analysis revealed that two haplotypes were significantly associated with TSH levels in euthyroid individuals. The ACGA and AC haplotypes on chromosomes 8 and 14 were significantly correlated with normal TSH levels, respectively (P-value = 0.014, P-value = 0.016).

Conclusions

This is the first genetic association study with TSH and FT4 reference values in an Iranian population. Our findings indicate that a few gene variants associated with the reference values of TSH in other populations are also associated with the reference values of TSH in Iranians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request after permission from the Endocrine and Metabolism Research Center of the Shahid Beheshti University of Medical Science.

Abbreviations

(GWAS):

Genome-wide association studies

(SNP):

Single nucleotide polymorphism

(TCGS):

Tehran Cardiometabolic Genetic Study

(TLGS):

Tehran Lipid and Glucose Study

(TTS):

Tehran thyroid study

(HWE):

Hardy–Weinberg equilibrium

(LDL):

Low-density lipoprotein

(HDL):

High-density lipoprotein

(SBP):

Systolic blood pressure

(DBP):

Diastolic blood pressure

(TG):

Triglyceride

(Chol):

Cholesterol

(BMI):

Body mass index

(TSH):

Thyroid-stimulating Hormone

(FT4):

Free thyroxine

(FGF7):

Fibroblast growth factor 7

References

  1. Giammanco M, Di Liegro CM, Schiera G. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci. 2020;21(11):4140. https://doi.org/10.3390/ijms21114140. (PubMed PMID: 32532017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Leow MK-S, Goede SL. The homeostatic set point of the hypothalamus-pituitary-thyroid axis--maximum curvature theory for personalized euthyroid targets. Theor Biol Med Model. 2014;11:35. https://doi.org/10.1186/1742-4682-11-35. PubMed PMID: 25102854.

  3. Hansen PS, Brix TH, Sørensen TI, Kyvik KO, Hegedüs L. Major genetic influence on the regulation of the pituitary-thyroid axis: a study of healthy Danish twins. The J Clin Endocrinol Metabol. 2004;89(3):1181–7. Epub 2004/03/06. https://doi.org/10.1210/jc.2003-031641. PubMed PMID: 15001606.

  4. Hansen PS, Brix TH, Iachine I, Sørensen TIA, Kyvik KO, Hegedüs L. Genetic and environmental interrelations between measurements of thyroid function in a healthy Danish twin population. Am J Physiol Endocrinol Metabol. 2007;292(3):E765–70. https://doi.org/10.1152/ajpendo.00321.2006. (PubMed PMID: 17090750).

    Article  CAS  Google Scholar 

  5. Panicker V, Wilson SG, Spector TD, Brown SJ, Falchi M, Richards JB, et al. Heritability of serum TSH, free T4 and free T3 concentrations: a study of a large UK twin cohort. Clin Endocrinol. 2008;68(4):652–9. https://doi.org/10.1111/j.1365-2265.2007.03079.x.

    Article  CAS  Google Scholar 

  6. Arnaud-Lopez L, Usala G, Ceresini G, Mitchell BD, Pilia MG, Piras MG, et al. Phosphodiesterase 8B gene variants are associated with serum TSH levels and thyroid function. Am J Human Gen. 2008;82(6):1270–80. Epub 2008/06/03. https://doi.org/10.1016/j.ajhg.2008.04.019. PubMed PMID: 18514160; PubMed Central PMCID: PMCPmc2427267.

  7. Porcu E, Medici M, Pistis G, Volpato CB, Wilson SG, Cappola AR, et al. A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Gen. 2013;9(2):e1003266. Epub 2013/02/15. https://doi.org/10.1371/journal.pgen.1003266. PubMed PMID: 23408906; PubMed Central PMCID: PMCPmc3567175.

  8. Taylor PN, Porcu E, Chew S, Campbell PJ, Traglia M, Brown SJ, et al. Erratum: Whole-genome sequence-based analysis of thyroid function. Nat Commun. 2015;6:7172. Epub 2015/05/21. https://doi.org/10.1038/ncomms8172. PubMed PMID: 25989729; PubMed Central PMCID: PMCPmc4462835.

  9. Teumer A, Chaker L, Groeneweg S, Li Y, Di Munno C, Barbieri C, et al. Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nature Commun. 2018;9(1):4455-. https://doi.org/10.1038/s41467-018-06356-1. PubMed PMID: 30367059.

  10. Kwak SH, Park YJ, Go MJ, Lee KE, Kim SJ, Choi HS, et al. A genome-wide association study on thyroid function and anti-thyroid peroxidase antibodies in Koreans. Hum Mol Genet. 2014;23(16):4433–42. Epub 2014/04/12. https://doi.org/10.1093/hmg/ddu145. PubMed PMID: 24722205; PubMed Central PMCID: PMCPmc4103676.

  11. Malinowski JR, Denny JC, Bielinski SJ, Basford MA, Bradford Y, Peissig PL, et al. Genetic variants associated with serum thyroid stimulating hormone (TSH) levels in European Americans and African Americans from the eMERGE Network. PloS one. 2014;9(12):e111301. Epub 2014/12/02. https://doi.org/10.1371/journal.pone.0111301. PubMed PMID: 25436638; PubMed Central PMCID: PMCPMC4249871 and have the following competing interests: Dr. Dana Crawford is an academic editor of PLOS ONE. Dr. Crawford is not involved in the review of this manuscript per journal policy. This disclosed competing interest does not alter the authors' adherence to PLOS ONE editorial policies and criteria. The remaining authors have declared that no competing interests exist.

  12. Nolan J, Campbell PJ, Brown SJ, Zhu G, Gordon S, Lim EM, et al. Genome-wide analysis of thyroid function in Australian adolescents highlights SERPINA7 and NCOA3. 2021;185(5):743–53. https://doi.org/10.1530/EJE-21-0614

  13. Sirugo G, Williams SM, Tishkoff SA. The Missing Diversity in Human Genetic Studies. Cell. 2019;177(4):1080. Epub 2019/05/06. https://doi.org/10.1016/j.cell.2019.04.032. PubMed PMID: 31051100.

  14. Azizi F, Zadeh-Vakili A, Takyar M. Review of Rationale, Design, and Initial Findings: Tehran Lipid and Glucose Study. Int J Endocrinol Metabol. 2018;16(4 Suppl):e84777. Epub 2018/12/26. https://doi.org/10.5812/ijem.84777. PubMed PMID: 30584442; PubMed Central PMCID: PMCPmc6289309.

  15. Amouzegar A, Mehran L, Takyar M, Abdi H, Azizi F. Tehran Thyroid Study (TTS). Int J Endocrinol Metabol. 2018;16(4 Suppl):e84727. Epub 2018/12/26. https://doi.org/10.5812/ijem.84727. PubMed PMID: 30584429; PubMed Central PMCID: PMCPmc6289306.

  16. Daneshpour MS, Fallah MS. Rationale and Design of a Genetic Study on Cardiometabolic Risk Factors: Protocol for the Tehran Cardiometabolic Genetic Study (TCGS). JMIR Res Protocols. 2017;6(2): e28. https://doi.org/10.2196/resprot.6050. (PubMed PMID: 28232301).

    Article  Google Scholar 

  17. Daneshpour MS, Akbarzadeh M, Lanjanian H, Sedaghati-Khayat B, Guity K, Masjoudi S, et al. Cohort profile update: Tehran cardiometabolic genetic study. Eur J Epidemiol. 2023;38(6):699–711. Epub 2023/05/12. https://doi.org/10.1007/s10654-023-01008-1. PubMed PMID: 37169991; PubMed Central PMCID: PMCPmc10175059.

  18. McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies. Biometrics. 2020;76(4):1262–72. Epub 2019/12/29. https://doi.org/10.1111/biom.13214. PubMed PMID: 31883270; PubMed Central PMCID: PMCPmc8643141.

  19. Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, et al. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Human Heredity. 2003;55(1):56–65. Epub 2003/08/02. https://doi.org/10.1159/000071811. PubMed PMID: 12890927.

  20. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Human Genet. 2002;70(2):425–34. Epub 2002/01/16. https://doi.org/10.1086/338688. PubMed PMID: 11791212; PubMed Central PMCID: PMCPmc384917.

  21. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, et al. Receptor specificity of the fibroblast growth factor family. The J Biol Chem. 1996;271(25):15292–7. Epub 1996/06/21. https://doi.org/10.1074/jbc.271.25.15292. PubMed PMID: 8663044.

  22. Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I, Dickson C. Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Bio. 2001;231(1):47–62. Epub 2001/02/22. https://doi.org/10.1006/dbio.2000.0144. PubMed PMID: 11180951.

  23. Teumer A, Rawal R, Homuth G, Ernst F, Heier M, Evert M, et al. Genome-wide association study identifies four genetic loci associated with thyroid volume and goiter risk. Am J Human Gen. 2011;88(5):664–73. Epub 2011/05/14. https://doi.org/10.1016/j.ajhg.2011.04.015. PubMed PMID: 21565293; PubMed Central PMCID: PMCPmc3146733.

  24. Boles KS, Barchet W, Diacovo T, Cella M, Colonna M. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood. 2005;106(3):779–86. Epub 2005/04/07. https://doi.org/10.1182/blood-2005-02-0817. PubMed PMID: 15811952.

  25. Marique L, Van Regemorter V, Gérard AC, Craps J, Senou M, Marbaix E, et al. The expression of dual oxidase, thyroid peroxidase, and caveolin-1 differs according to the type of immune response (TH1/TH2) involved in thyroid autoimmune disorders. The J Clin Endocrinol Metabol. 2014;99(5):1722–32. Epub 2014/01/31. https://doi.org/10.1210/jc.2013-3469. PubMed PMID: 24476075.

  26. Senou M, Costa MJ, Massart C, Thimmesch M, Khalifa C, Poncin S, et al. Role of caveolin-1 in thyroid phenotype, cell homeostasis, and hormone synthesis: in vivo study of caveolin-1 knockout mice. Am J Physiol Endocrinol Metabol. 2009;297(2):E438–51. Epub 2009/05/14. https://doi.org/10.1152/ajpendo.90784.2008. PubMed PMID: 19435853.

  27. Martí-Massó JF, Bergareche A, Makarov V, Ruiz-Martinez J, Gorostidi A, López de Munain A, et al. The ACMSD gene, involved in tryptophan metabolism, is mutated in a family with cortical myoclonus, epilepsy, and parkinsonism. J Mol Med (Berl). 2013;91(12):1399–406. Epub 08/20. https://doi.org/10.1007/s00109-013-1075-4. PubMed PMID: 23955123.

  28. Yamamoto M, Takahashi Y. The Essential Role of SIRT1 in Hypothalamic-Pituitary Axis. Front Endocrinol. 2018;9:605. Epub 2018/11/09. https://doi.org/10.3389/fendo.2018.00605. PubMed PMID: 30405528; PubMed Central PMCID: PMCPmc6205959.

  29. Akieda-Asai S, Zaima N, Ikegami K, Kahyo T, Yao I, Hatanaka T, et al. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals. PloS one. 2010;5(7):e11755. Epub 2010/07/30. https://doi.org/10.1371/journal.pone.0011755. PubMed PMID: 20668706; PubMed Central PMCID: PMCPmc2909264.

  30. Maia AL, Goemann IM, Meyer EL, Wajner SM. Deiodinases: the balance of thyroid hormone: type 1 iodothyronine deiodinase in human physiology and disease. J Endocrinol. 2011;209(3):283–97. Epub 2011/03/19. https://doi.org/10.1530/joe-10-0481. PubMed PMID: 21415143.

  31. Peeters RP, van Toor H, Klootwijk W, de Rijke YB, Kuiper GG, Uitterlinden AG, et al. Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects. The J Clin Endocrinol Metabol. 2003;88(6):2880–8. Epub 2003/06/06. https://doi.org/10.1210/jc.2002-021592. PubMed PMID: 12788902.

  32. Ricci C, Kakularam KR, Marzocchi C, Capecchi G, Riolo G, Boschin F, et al. Thr92Ala polymorphism in the type 2 deiodinase gene: an evolutionary perspective. J Endocrinol Invest. 2020;43(12):1749–57. https://doi.org/10.1007/s40618-020-01287-5. (PubMed PMID: 32436183).

    Article  PubMed  CAS  Google Scholar 

  33. Kuś A, Chaker L, Teumer A, Peeters RP, Medici M. The Genetic Basis of Thyroid Function: Novel Findings and New Approaches. The J Clin Endocrinol Metabol. 2020;105(6). Epub 2020/04/10. https://doi.org/10.1210/clinem/dgz225. PubMed PMID: 32271924.

  34. Castagna MG, Dentice M, Cantara S, Ambrosio R, Maino F, Porcelli T, et al. DIO2 Thr92Ala Reduces Deiodinase-2 Activity and Serum-T3 Levels in Thyroid-Deficient Patients. The J Clin Endocrinol Metabol. 2017;102(5):1623–30. Epub 2017/03/23. https://doi.org/10.1210/jc.2016-2587. PubMed PMID: 28324063.

  35. Vaz-Drago R, Custódio N, Carmo-Fonseca M. Deep intronic mutations and human disease. Human Gen. 2017;136(9):1093–111. Epub 2017/05/13. https://doi.org/10.1007/s00439-017-1809-4. PubMed PMID: 28497172.

  36. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(23):9362–7. Epub 2009/05/29. https://doi.org/10.1073/pnas.0903103106. PubMed PMID: 19474294; PubMed Central PMCID: PMCPmc2687147.

  37. Lin H, Hargreaves KA, Li R, Reiter JL, Wang Y, Mort M, et al. RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biol. 2019;20(1):254. https://doi.org/10.1186/s13059-019-1847-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. MirAlireza Takyar for his guidance and suggestions for marker selection.

Funding

This study was supported in part by Grant No 28741–7 from Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam S. Daneshpour.

Ethics declarations

Competing Interest

The authors declare that they have no conflict of interest.

Study concept and design

AZ, MSD, HA. Acquisition of data: LNHB, ASZ. Analysis and interpretation of data: LNHB, MA, AZ. Drafting of the manuscript: AZ, LNHB, FA. Critical revision of the manuscript for important intellectual content AZ, MSD, HA, FA, MA. Statistical analysis: MA, LNHB. Administrative, technical, and material support: FA, MSD, HA. Study supervision: FA, MSD, AZ.

All authors discussed the results and contributed to the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (XLSX 328 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadeh-Vakili, A., Najd-Hassan-Bonab, L., Akbarzadeh, M. et al. Three candidate SNPs show associations with thyroid-stimulating hormone in euthyroid subjects: Tehran thyroid study. J Diabetes Metab Disord (2024). https://doi.org/10.1007/s40200-023-01383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40200-023-01383-2

Keywords

Navigation