Skip to main content

Advertisement

Log in

Metabolomics signature of cardiovascular disease in patients with diabetes, a narrative review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

The exact underlying mechanism of developing diabetes-related cardiovascular disease (CVD) among patients with type 2 diabetes (T2D) is not clear. Metabolomics can provide a platform enabling the prediction, diagnosis, and understanding of the risk of CVD in patients with diabetes mellitus. The aim of this review is to summarize the available evidence on the relationship between metabolomics and cardiovascular diseases in patients with diabetes.

Methods

The literature was searched to find out studies that have investigated the relationship between the alteration of specific metabolites and cardiovascular diseases in patients with diabetes.

Results

Evidence proposed that changes in the metabolism of certain amino acids, lipids, and carbohydrates, independent of traditional CVD risk factors, are associated with increased CVD risk.

Conclusions

Metabolomics can provide a platform to enable the prediction, diagnosis, and understanding of the risk of CVD in patients with diabetes mellitus. The association of the alteration in specific metabolites with CVD may be considered in the investigations for the development of new therapeutic targets for the prevention of CVD in patients with diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabish SA. Is diabetes becoming the biggest epidemic of the twenty-first century? Int J health Sci. 2007;1(2):V.

    Google Scholar 

  2. International Diabetes Federation. IDF Diabetes Atlas, 10th ed. ; 2021. https://diabetesatlas.org/atlas/tenth-edition/.

  3. Moradi-Lakeh M, El Bcheraoui C, Khalil I, Charara R, Afshin A, Wang H, et al. Diabetes mellitus and chronic kidney disease in the Eastern Mediterranean Region: findings from the global burden of Disease 2015 study. Int J Public Health. 2018;63(1):177–86.

    Google Scholar 

  4. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    CAS  PubMed  Google Scholar 

  5. Wei M, Gaskill SP, Haffner SM, Stern MP. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio Heart Study. Diabetes Care. 1998;21(7):1167–72.

    CAS  PubMed  Google Scholar 

  6. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: Cardiovascular Disease in Diabetes Mellitus: atherosclerotic Cardiovascular Disease and Heart failure in type 2 diabetes Mellitus - Mechanisms, Management, and clinical considerations. Circulation. 2016;133(24):2459–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mohammadi E, Morasa FS, Roshani S, Rezaei N, Azadnajafabad S, Moghaddam SS, et al. Estimating the attributable risk of vascular disorders in different ranges of fasting plasma glucose and assessing the effectiveness of anti-diabetes agents on risk reduction; questioning the current diagnostic criteria. J Diabetes Metab Disord. 2020;19(2):1423–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Farzadfar F, Naghavi M, Sepanlou S, Saeedi Moghaddam S, Dangel W, Weaver N et al. Health system performance in Iran: a systematic analysis for the global burden of Disease Study 2019. The Lancet. 2022;399.

  9. Magnusson M, Lewis GD, Ericson U, Orho-Melander M, Hedblad B, Engström G, et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J. 2013;34(26):1982–9.

    CAS  PubMed  Google Scholar 

  10. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and Cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    CAS  PubMed  Google Scholar 

  11. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and Cardiovascular Outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    CAS  PubMed  Google Scholar 

  12. Croyal M, Saulnier PJ, Aguesse A, Gand E, Ragot S, Roussel R et al. Plasma trimethylamine N-Oxide and risk of Cardiovascular events in patients with type 2 diabetes. J Clin Endocrinol Metab. 2020;105(7).

  13. Harris K, Oshima M, Sattar N, Würtz P, Jun M, Welsh P, et al. Plasma fatty acids and the risk of vascular disease and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE study. Diabetologia. 2020;63(8):1637–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 2004;22(5):245–52.

    CAS  PubMed  Google Scholar 

  15. Au A. Metabolomics and lipidomics of ischemic stroke. Adv Clin Chem. 2018;85:31–69.

    CAS  PubMed  Google Scholar 

  16. Bingol K. Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods. High-Throughput. 2018;7(2):9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vinayavekhin N, Saghatelian A. Untargeted metabolomics. Curr Protoc Mol Biol. 2010;90(1):30. 1-.1. 24.

    Google Scholar 

  18. Letertre MP, Giraudeau P, De Tullio P. Nuclear magnetic resonance spectroscopy in clinical metabolomics and personalized medicine: current challenges and perspectives. Front Mol Biosci. 2021;8.

  19. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137(2):293–300.

    CAS  PubMed  Google Scholar 

  20. Emwas A-H, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GN, et al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9(7):123.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lutz NW, Bernard M. Methodological developments for metabolic NMR spectroscopy from cultured cells to tissue extracts: achievements, Progress and Pitfalls. Molecules. 2022;27(13):4214.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–703.

    CAS  PubMed  Google Scholar 

  23. Letertre MPM, Dervilly G, Giraudeau P. Combined Nuclear magnetic resonance spectroscopy and Mass Spectrometry Approaches for Metabolomics. Anal Chem. 2021;93(1):500–18.

    CAS  PubMed  Google Scholar 

  24. Trivedi DK, Iles RK. Do not just do it, do it right: urinary metabolomics–establishing clinically relevant baselines. Biomed Chromatogr. 2014;28(11):1491–501.

    CAS  PubMed  Google Scholar 

  25. Chen ZZ, Gerszten RE. Metabolomics and proteomics in type 2 diabetes. Circ Res. 2020;126(11):1613–27.

    CAS  PubMed  Google Scholar 

  26. Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform Metabolomics Study in an epidemiological setting. PLoS ONE. 2010;5(11):e13953.

    PubMed  PubMed Central  Google Scholar 

  27. Kimura T, Noguchi Y, Shikata N, Takahashi M. Plasma amino acid analysis for diagnosis and amino acid-based metabolic networks. Curr Opin Clin Nutr Metab Care. 2009;12(1):49–53.

    CAS  PubMed  Google Scholar 

  28. McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular Metabolomics. Circ Res. 2018;122(9):1238–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvadó J, et al. Plasma branched-chain amino acids and Incident Cardiovascular Disease in the PREDIMED Trial. Clin Chem. 2016;62(4):582–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kume S, Araki S-i, Ono N, Shinhara A, Muramatsu T, Araki H, et al. Predictive Properties of plasma amino Acid Profile for Cardiovascular Disease in patients with type 2 diabetes. PLoS ONE. 2014;9(6):e101219.

    PubMed  PubMed Central  Google Scholar 

  31. White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab. 2021;52:101261.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Krzyzanowska K, Mittermayer F, Wolzt M, Schernthaner G. Asymmetric dimethylarginine predicts cardiovascular events in patients with type 2 diabetes. Diabetes Care. 2007;30(7):1834–9.

    CAS  PubMed  Google Scholar 

  33. Lim YJ, Sidor NA, Tonial NC, Che A, Urquhart BL. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins. 2021;13(2):142.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Krzyzanowska K, Mittermayer F, Krugluger W, Schnack C, Hofer M, Wolzt M, et al. Asymmetric dimethylarginine is associated with macrovascular disease and total homocysteine in patients with type 2 diabetes. Atherosclerosis. 2006;189(1):236–40.

    CAS  PubMed  Google Scholar 

  35. Lajer M, Tarnow L, Jorsal A, Teerlink T, Parving H-H, Rossing P. Plasma concentration of asymmetric dimethylarginine (ADMA) predicts Cardiovascular Morbidity and Mortality in Type 1 Diabetic Patients with Diabetic Nephropathy. Diabetes Care. 2008;31(4):747–52.

    CAS  PubMed  Google Scholar 

  36. Ma J, Folsom AR, Shahar E, Eckfeldt JH. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The atherosclerosis risk in Communities (ARIC) Study investigators. Am J Clin Nutr. 1995;62(3):564–71.

    CAS  PubMed  Google Scholar 

  37. Hafizi Abu Bakar M, Kian Kai C, Wan Hassan WN, Sarmidi MR, Yaakob H, Zaman Huri H. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes Metab Res Rev. 2015;31(5):453–75.

    CAS  PubMed  Google Scholar 

  38. Hosseinkhani S, Salari P, Bandarian F, Asadi M, Shirani S, Najjar N, et al. Circulating amino acids and acylcarnitines correlated with different CAC score ranges in diabetic postmenopausal women using LC–MS/MS based metabolomics approach. BMC Endocr Disord. 2022;22(1):1–9.

    Google Scholar 

  39. Harris K, Muntner P, Woodward M, Jun M, Oshima M, Gong J et al. Clinical outcomes by atherosclerotic cardiovascular disease risk score and blood pressure level in high risk individuals with type 2 diabetes. J Hum Hypertens. 2022.

  40. Knottnerus SJ, Bleeker JC, Wüst RC, Ferdinandusse S, IJlst L, Wijburg FA, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord. 2018;19(1):93–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun L, Liang L, Gao X, Zhang H, Yao P, Hu Y, et al. Early prediction of developing type 2 diabetes by plasma acylcarnitines: a Population-Based study. Diabetes Care. 2016;39(9):1563–70.

    PubMed  Google Scholar 

  42. Hosseinkhani S, Emamgholipour S, Salari P, Khalagi K, Shirani S, Najjar N, et al. Evaluating the association between amino acid and acylcarnitine profiles and different levels of coronary artery disease risk in postmenopausal women using targeted metabolomics technique. Menopause. 2022;29(9):1062–70.

    PubMed  Google Scholar 

  43. Karagiannidis E, Moysidis DV, Papazoglou AS, Panteris E, Deda O, Stalikas N, et al. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease. Cardiovasc Diabetol. 2022;21(1):1–10.

    Google Scholar 

  44. Slotte JP. Biological functions of sphingomyelins. Prog Lipid Res. 2013;52(4):424–37.

    CAS  PubMed  Google Scholar 

  45. Chen Y, Jia H, Qian X, Wang J, Yu M, Gong Q, et al. Circulating Palmitoyl Sphingomyelin is Associated with Cardiovascular Disease in individuals with type 2 diabetes: findings from the China Da Qing diabetes study. Diabetes Care. 2022;45(3):666–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferreira-Divino LF, Suvitaival T, Rotbain Curovic V, Tofte N, Trošt K, Mattila IM, et al. Circulating metabolites and molecular lipid species are associated with future cardiovascular morbidity and mortality in type 1 diabetes. Cardiovasc Diabetol. 2022;21(1):1–10.

    Google Scholar 

  47. Pongrac Barlovic D, Harjutsalo V, Sandholm N, Forsblom C, Groop PH. Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes. Diabetologia. 2020;63(9):1847–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Park T-S, Goldberg IJ. Sphingolipids, lipotoxic cardiomyopathy, and cardiac failure. Heart Fail Clin. 2012;8(4):633–41.

    PubMed  PubMed Central  Google Scholar 

  49. Jiang X-c, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2000;20(12):2614–8.

    CAS  PubMed  Google Scholar 

  50. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med. 2006;119(5):10–S6.

    Google Scholar 

  51. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim et Biophys Acta (BBA) - Biomembr. 2017;1859(9, Part B):1558–72.

  52. Reiss D, Beyer K, Engelmann B. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J. 1997;323(3):807–14. (Pt 3)(Pt.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1558–72.

    PubMed  Google Scholar 

  54. Stratmann B, Richter K, Wang R, Yu Z, Xu T, Prehn C, et al. Metabolomic signature of coronary artery disease in type 2 diabetes Mellitus. Int J Endocrinol. 2017;2017:7938216.

    PubMed  PubMed Central  Google Scholar 

  55. Hartiala J, Bennett BJ, Tang WH, Wang Z, Stewart AF, Roberts R, et al. Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler Thromb Vasc Biol. 2014;34(6):1307–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38(39):2948–56.

    CAS  PubMed  Google Scholar 

  57. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127(4):553–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55.

    CAS  PubMed  Google Scholar 

  59. Croyal M, Saulnier P-J, Aguesse A, Gand E, Ragot S, Roussel R, et al. Plasma trimethylamine N-Oxide and risk of Cardiovascular events in patients with type 2 diabetes. J Clin Endocrinol Metab. 2020;105(7):2371–80.

    Google Scholar 

  60. Flores-Guerrero JL, van Dijk PR, Connelly MA, Garcia E, Bilo HJG, Navis G, et al. Circulating trimethylamine N-Oxide is Associated with increased risk of Cardiovascular Mortality in Type-2 diabetes: results from a dutch diabetes cohort (ZODIAC-59). J Clin Med. 2021;10(11):2269.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cardona A, O’Brien A, Bernier MC, Somogyi A, Wysocki VH, Smart S, et al. Trimethylamine N-oxide and incident atherosclerotic events in high-risk individuals with diabetes: an ACCORD trial post hoc analysis. BMJ Open Diabetes Research and Care. 2019;7(1):e000718.

    PubMed  PubMed Central  Google Scholar 

  62. Winther SA, Øllgaard JC, Hansen TW, von Scholten BJ, Reinhard H, Ahluwalia TS, et al. Plasma trimethylamine N-oxide and its metabolic precursors and risk of mortality, cardiovascular and renal disease in individuals with type 2-diabetes and albuminuria. PLoS ONE. 2021;16(3):e0244402.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jia J, Dou P, Gao M, Kong X, Li C, Liu Z, et al. Assessment of Causal Direction between Gut Microbiota–Dependent Metabolites and Cardiometabolic Health: a bidirectional mendelian randomization analysis. Diabetes. 2019;68(9):1747–55.

    CAS  PubMed  Google Scholar 

  64. Festa A, Williams K, Hanley AJG, Otvos JD, Goff DC, Wagenknecht LE, et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the insulin resistance atherosclerosis study. Circulation. 2005;111(25):3465–72.

    PubMed  Google Scholar 

  65. Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med. 2011;17(10):594–603.

    CAS  PubMed  Google Scholar 

  66. Camont L, Lhomme M, Rached F, Le Goff W, Nègre-Salvayre A, Salvayre R, et al. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler Thromb Vasc Biol. 2013;33(12):2715–23.

    CAS  PubMed  Google Scholar 

  67. Soedamah-Muthu SS, Chang YF, Otvos J, Evans RW, Orchard TJ. Lipoprotein subclass measurements by nuclear magnetic resonance spectroscopy improve the prediction of coronary artery disease in type 1 diabetes. A prospective report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2003;46(5):674–82.

    CAS  PubMed  Google Scholar 

  68. Alshehry ZH, Mundra PA, Barlow CK, Mellett NA, Wong G, McConville MJ, et al. Plasma lipidomic profiles improve on traditional risk factors for the Prediction of Cardiovascular events in type 2 diabetes Mellitus. Circulation. 2016;134(21):1637–50.

    CAS  PubMed  Google Scholar 

  69. Cardona A, O’Brien A, Bernier MC, Somogyi A, Wysocki VH, Smart S, et al. Trimethylamine N-oxide and incident atherosclerotic events in high-risk individuals with diabetes: an ACCORD trial post hoc analysis. BMJ Open Diabetes Res Care. 2019;7(1):e000718.

    PubMed  PubMed Central  Google Scholar 

  70. Huang Z, Klaric L, Krasauskaite J, McLachlan S, Strachan MW, Wilson JF, et al. Serum metabolomic profiles associated with subclinical and clinical cardiovascular phenotypes in people with type 2 diabetes. Cardiovasc Diabetol. 2022;21(1):1–10.

    Google Scholar 

  71. Lim LL, Lau ES, Fung E, Lee HM, Ma RC, Tam CH, et al. Circulating branched-chain amino acids and incident heart failure in type 2 diabetes: the Hong Kong Diabetes Register. Diabetes/Metab Res Rev. 2020;36(3):e3253.

    CAS  PubMed  Google Scholar 

  72. Ottosson F, Smith E, Fernandez C, Melander O. Plasma metabolites associate with all-cause mortality in individuals with type 2 diabetes. Metabolites. 2020;10(8):315–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Welsh P, Rankin N, Li Q, Mark PB, Würtz P, Ala-Korpela M, et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia. 2018;61(7):1581–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Deda O, Panteris E, Meikopoulos T, Begou O, Mouskeftara T, Karagiannidis E, et al. Correlation of serum acylcarnitines with clinical presentation and severity of coronary artery disease. Biomolecules. 2022;12(3):354.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Li T, Luo HH, Feng XF, Bai Y, Fang ZZ, Wu GG, et al. Plasma free amino acids and risk of Cardiovascular Disease in chinese patients with type 2 diabetes. Front Endocrinol (Lausanne). 2020;11:519923.

    PubMed  Google Scholar 

  76. Liu X, Gao J, Chen J, Wang Z, Shi Q, Man H, et al. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach. Sci Rep. 2016;6:30785.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu W, Guo P, Dai T, Shi X, Shen G, Feng J. Metabolic interactions and differences between Coronary Heart Disease and Diabetes Mellitus: a pilot study on Biomarker determination and pathogenesis. J Proteome Res. 2021;20(5):2364–73.

    CAS  PubMed  Google Scholar 

  78. Zhao S, Feng XF, Huang T, Luo HH, Chen JX, Zeng J, et al. The Association between acylcarnitine metabolites and Cardiovascular Disease in chinese patients with type 2 diabetes Mellitus. Front Endocrinol (Lausanne). 2020;11:212.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hananeh Taghizadeh, Farideh Razi or Bagher Larijani.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodangeh, S., Taghizadeh, H., Hosseinkhani, S. et al. Metabolomics signature of cardiovascular disease in patients with diabetes, a narrative review. J Diabetes Metab Disord 22, 985–994 (2023). https://doi.org/10.1007/s40200-023-01256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-023-01256-8

Keywords

Navigation