Skip to main content

Advertisement

Log in

The association between major dietary patterns with the risk of non-alcoholic fatty liver disease, oxidative stress and metabolic parameters: A case–control study

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Non-alcoholic fatty liver disease (NAFLD) is caused by the increase of fat in the liver. The present study aimed to study the association between different dietary patterns and NAFLD in adults.

Methods

This study included 121 adult patients with NAFLD and 119 non-NAFLD. Dietary intake was calculated by a 168-item food frequency questionnaire. Biochemical markers were measured. Dietary patterns were determined by factor analysis. The association between dietary patterns and NAFLD was evaluated using multiple logistic regression analysis.

Results

Two dietary patterns (healthy, western) were recognized in participants. Western dietary pattern was related with 72 percent increase in the odds of NAFLD (OR: 1.72; 95% CI: 1.32,2.14), after adjustment for covariates. Healthy dietary pattern was associated with 38 percent lower odds of NAFLD (OR: 0.38; 95% CI: 0.11, 0.65). Adherence to the western diet was related to 0.486 greater amounts of ALT, 3.248 mg/dl higher levels of FBS, and 3.989 mg/dl greater amounts of TG and 2.354 mg/dl greater amounts of MDA after adjusting for confounding factors (p > 0.001, p = 0.042, p > 0.001, p = 0.036 respectively). The healthy dietary pattern score was negatively associated with FBS and Cholesterol and TG levels (p = 0.035, p = 0.048, and p = 0.025), respectively. Moreover, it was associated with 3.211 mg/dl higher levels of TAC (p = 0.049).

Conclusions

There is a significant relationship between dietary patterns and non-alcoholic fatty liver disease. Adherence to a western dietary pattern is related to an increase in non-alcoholic fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313(22):2263–73.

    Article  CAS  PubMed  Google Scholar 

  2. Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64(5):1577–86.

    Article  PubMed  Google Scholar 

  3. Kumar R, Priyadarshi RN, Anand U. Non-alcoholic fatty liver disease: growing burden, adverse outcomes and associations. J Clin Transl Hepatol. 2020;8(1):76.

    PubMed  Google Scholar 

  4. Ferramosca A, Di Giacomo M, Zara V. Antioxidant dietary approach in treatment of fatty liver: New insights and updates. World J Gastroenterol. 2017;23(23):4146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mokhtari Z, Gibson DL, Hekmatdoost A. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv Nutr. 2017;8(2):240–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okanoue T, Umemura A, Yasui K, Itoh Y. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. J Gastroenterol Hepatol. 2011;26:153–62.

    Article  CAS  PubMed  Google Scholar 

  7. Ballestri S, Nascimbeni F, Baldelli E, Marrazzo A, Romagnoli D, Lonardo A. NAFLD as a sexual dimorphic disease: role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv Ther. 2017;34(6):1291–326.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vos MB, Colvin R, Belt P, Molleston JP, Murray KF, Rosenthal P, et al. Correlation of vitamin E, uric acid and diet composition with histologic features of pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2012;54(1):90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheah MC, McCullough AJ, Goh GB. Dietary manipulations for nonalcoholic fatty liver disease (NAFLD). Bioactive food as dietary interventions for diabetes: Elsevier; 2019. p. 69–88.

    Google Scholar 

  10. Mirmiran P, Amirhamidi Z, Ejtahed H-S, Bahadoran Z, Azizi F. Relationship between diet and non-alcoholic fatty liver disease: a review article. Iran J Public Health. 2017;46(8):1007.

    PubMed  PubMed Central  Google Scholar 

  11. Heinonen I, Rinne P, Ruohonen S, Ruohonen S, Ahotupa M, Savontaus E. The effects of equal caloric high fat and western diet on metabolic syndrome, oxidative stress and vascular endothelial function in mice. Acta Physiol. 2014;211(3):515–27.

    Article  CAS  Google Scholar 

  12. Lampret BR, Murko S, Tanšek MŽ, Podkrajšek KT, Debeljak M, Šmon A, et al. Selective Screening for Metabolic Disorders in the Slovenian Pediatric Population/Selektivni Skrining Metaboličkih Poremećaja Kod Dečije Populacije U Sloveniji. Journal of medical biochemistry. 2014;34(1):58–63.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tan BL, Norhaizan ME, Liew W-P-P, Sulaiman Rahman H. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Frontiers in pharmacology. 2018;9:1162.

  14. Alavian SM, Esmaillzadeh A, Adibi P, Azadbakht L. Dietary quality indices and biochemical parameters among patients with non alcoholic fatty liver disease (NAFLD). Hepatitis monthly. 2013;13(7).

  15. Di Minno MND, Russolillo A, Lupoli R, Ambrosino P, Di Minno A, Tarantino G. Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease. World J Gastroenterol: WJG. 2012;18(41):5839.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang X, Deng F. Iron overload is associated with non-alcoholic fatty liver disease (NAFLD): results from The NHANES III survey. European Journal of BioMedical Research. 2017;3(1):10–5.

    Article  Google Scholar 

  17. Jia Q, Xia Y, Zhang Q, Wu H, Du H, Liu L, et al. Dietary patterns are associated with prevalence of fatty liver disease in adults. Eur J Clin Nutr. 2015;69(8):914–21.

    Article  CAS  PubMed  Google Scholar 

  18. Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Blendis L, Halpern Z, et al. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J Hepatol. 2007;47(5):711–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kim H-Y, Lee J, Kim J. Association between dietary inflammatory index and metabolic syndrome in the general Korean population. Nutrients. 2018;10(5):648.

    Article  PubMed Central  Google Scholar 

  20. Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13(5):654–62.

    Article  PubMed  Google Scholar 

  21. Azar M, Sarkisian E. Food composition table of Iran: National Nutrition and food research institute. Tehran: Shaheed Beheshti University; 1980.

    Google Scholar 

  22. US Department of Agriculture ARS. USDA national nutrient database for standard reference, release 28. Nutrient data laboratory home page. 2011.

  23. Ghafarpour M, Houshiar-Rad A, Kianfar H, Ghaffarpour M. The manual for household measures, cooking yields factors and edible portion of food. Tehran: Keshavarzi Press; 1999.

    Google Scholar 

  24. Aadahl M, Jørgensen T. Validation of a new self-report instrument for measuring physical activity. Med Sci Sports Exerc. 2003;35(7):1196–202.

    Article  PubMed  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  26. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  27. Samuels P. Advice on exploratory factor analysis. 2017.

  28. Sherzai A, Heim LT, Boothby C, Sherzai AD. Stroke, food groups, and dietary patterns: a systematic review. Nutr Rev. 2012;70(8):423–35.

    Article  PubMed  Google Scholar 

  29. Oddy WH, Herbison CE, Jacoby P, Ambrosini GL, O’sullivan TA, Ayonrinde OT, et al. The Western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Am J Gastroenterol. 2013;108(5):778–85.

    Article  CAS  PubMed  Google Scholar 

  30. Shim P, Choi D, Park Y. Association of blood fatty acid composition and dietary pattern with the risk of non-alcoholic fatty liver disease in patients who underwent cholecystectomy. Ann Nutr Metab. 2017;70(4):303–11.

    Article  CAS  PubMed  Google Scholar 

  31. Chung GE, Youn J, Kim YS, Lee JE, Yang SY, Lim JH, et al. Dietary patterns are associated with the prevalence of nonalcoholic fatty liver disease in Korean adults. Nutrition. 2019;62:32–8.

    Article  PubMed  Google Scholar 

  32. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zelber-Sagi S, Ivancovsky-Wajcman D, Isakov NF, Webb M, Orenstein D, Shibolet O, et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol. 2018;68(6):1239–46.

    Article  CAS  PubMed  Google Scholar 

  34. Hashemian M, Merat S, Poustchi H, Jafari E, Radmard A-R, Kamangar F, et al. Red meat consumption and risk of nonalcoholic fatty liver disease in a population with low meat consumption: the golestan cohort study. Am J Gastroenterol. 2021;116(8):1667–75.

    Article  PubMed  Google Scholar 

  35. Peng H, Xie X, Pan X, Zheng J, Zeng Y, Cai X, et al. Association of meat consumption with NAFLD risk and liver-related biochemical indexes in older Chinese: a cross-sectional study. BMC Gastroenterol. 2021;21(1):1–11.

    Article  Google Scholar 

  36. Lee JW, Park SH. Association between depression and nonalcoholic fatty liver disease: Contributions of insulin resistance and inflammation. J Affect Disord. 2021;278:259–63.

    Article  CAS  PubMed  Google Scholar 

  37. Chao H-W, Chao S-W, Lin H, Ku H-C, Cheng C-F. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease. Int J Mol Sci. 2019;20(2):298.

    Article  PubMed Central  Google Scholar 

  38. Dhibi M, Brahmi F, Mnari A, Houas Z, Chargui I, Bchir L, et al. The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats. Nutr Metab. 2011;8(1):65.

    Article  CAS  Google Scholar 

  39. Luo Y, Burrington CM, Graff EC, Zhang J, Judd RL, Suksaranjit P, et al. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. American Journal of Physiology-Endocrinology and Metabolism. 2016;310(6):E418–39.

    Article  PubMed  Google Scholar 

  40. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2008;295(5):G987-G95.

  41. Doost Mohammadi F, Vazirinejad R, Rezaeian M, Vazirinejad E, Bastam D, Ahmadinia H, et al. Fast food consumption and the risk of non-alcoholic fatty liver in adults: A community-based case-control study. Journal of Occupational Health and Epidemiology. 2019;8(4):176–84.

    Article  Google Scholar 

  42. Scapaticci S, D’Adamo E, Mohn A, Chiarelli F, Giannini C. Non-alcoholic fatty liver disease in obese youth with insulin resistance and type 2 diabetes. Frontiers in Endocrinology. 2021;12.

  43. Khatatbeh M, Momani W, Altaani Z, Al Saad R, Al Bourah AR. Fast food consumption, liver functions, and change in body weight among university students: A cross-sectional study. International Journal of Preventive Medicine. 2021;12.

  44. Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacol Res. 2018;131:32–43.

    Article  PubMed  Google Scholar 

  45. Fakhoury-Sayegh N, Younes H, Heraoui GN, Sayegh R. Nutritional profile and dietary patterns of lebanese non-alcoholic fatty liver disease patients: a case-control study. Nutrients. 2017;9(11):1245.

    Article  PubMed Central  Google Scholar 

  46. Adriano LS, de Carvalho Sampaio HA, Arruda SPM, de Melo Portela CL, de Melo MLP, Carioca AAF, et al. Healthy dietary pattern is inversely associated with non-alcoholic fatty liver disease in elderly. Br J Nutr. 2016;115(12):2189–95.

    Article  CAS  PubMed  Google Scholar 

  47. Yang C-Q, Shu L, Wang S, Wang J-J, Zhou Y, Xuan Y-J, et al. Dietary patterns modulate the risk of non-alcoholic fatty liver disease in Chinese adults. Nutrients. 2015;7(6):4778–91.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arendt BM, Allard JP. Effect of atorvastatin, vitamin E and C on nonalcoholic fatty liver disease: is the combination required? Am J Gastroenterol. 2011;106(1):78–80.

    Article  PubMed  Google Scholar 

  49. Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. 2003;37(4):909–16.

    Article  CAS  PubMed  Google Scholar 

  50. Geetha K, Yankanchi GM, Hulamani S, Hiremath N. Glycemic index of millet based food mix and its effect on pre diabetic subjects. Journal of Food Science and Technology. 2020:1–7.

  51. Xia Y, Lu Z, Lu M, Liu M, Liu L, Meng G, et al. Raw orange intake is associated with higher prevalence of non-alcoholic fatty liver disease in an adult population. Nutrition. 2019;60:252–60.

    Article  CAS  PubMed  Google Scholar 

  52. Tajima R, Kimura T, Enomoto A, Saito A, Kobayashi S, Masuda K, et al. No association between fruits or vegetables and non-alcoholic fatty liver disease in middle-aged men and women. Nutrition. 2019;61:119–24.

    Article  PubMed  Google Scholar 

  53. Venkatachalam M, Sathe SK. Chemical composition of selected edible nut seeds. J Agric Food Chem. 2006;54(13):4705–14.

    Article  CAS  PubMed  Google Scholar 

  54. bing Chen B, Han Y, Pan X, Yan J, Liu W, Li Y, et al. Association between nut intake and non-alcoholic fatty liver disease risk: a retrospective case-control study in a sample of Chinese Han adults. BMJ open. 2019;9(9):e028961.

  55. Zhang S, Fu J, Zhang Q, Liu L, Meng G, Yao Z, et al. Association between nut consumption and non-alcoholic fatty liver disease in adults. Liver Int. 2019;39(9):1732–41.

    Article  CAS  PubMed  Google Scholar 

  56. Plaz Torres MC, Bodini G, Furnari M, Marabotto E, Zentilin P, Giannini EG. Nuts and Non-Alcoholic Fatty Liver Disease: Are Nuts Safe for Patients with Fatty Liver Disease? Nutrients. 2020;12(11):3363.

    Article  PubMed Central  Google Scholar 

  57. Bowen J, Luscombe-Marsh ND, Stonehouse W, Tran C, Rogers GB, Johnson N, et al. Effects of almond consumption on metabolic function and liver fat in overweight and obese adults with elevated fasting blood glucose: A randomised controlled trial. Clinical nutrition ESPEN. 2019;30:10–8.

    Article  PubMed  Google Scholar 

  58. Agebratt C, Ström E, Romu T, Dahlqvist-Leinhard O, Borga M, Leandersson P, et al. A randomized study of the effects of additional fruit and nuts consumption on hepatic fat content, cardiovascular risk factors and basal metabolic rate. PloS one. 2016;11(1):e0147149.

  59. Sirota R, Gorelik S, Harris R, Kohen R, Kanner J. Coffee polyphenols protect human plasma from postprandial carbonyl modifications. Mol Nutr Food Res. 2013;57(5):916–9.

    Article  CAS  PubMed  Google Scholar 

  60. D Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Annali-Istituto Superiore di Sanita. 2007;43(4):348.

  61. Bonita JS, Mandarano M, Shuta D, Vinson J. Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. Pharmacol Res. 2007;55(3):187–98.

    Article  CAS  PubMed  Google Scholar 

  62. Shen H, Rodriguez AC, Shiani A, Lipka S, Shahzad G, Kumar A, et al. Association between caffeine consumption and nonalcoholic fatty liver disease: a systemic review and meta-analysis. Ther Adv Gastroenterol. 2016;9(1):113–20.

    Article  CAS  Google Scholar 

  63. Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Annals of Hepatology. 2021;20:100254.

  64. Panchal SK, Poudyal H, Waanders J, Brown L. Coffee extract attenuates changes in cardiovascular and hepatic structure and function without decreasing obesity in high-carbohydrate, high-fat diet-fed male rats. J Nutr. 2012;142(4):690–7.

    Article  CAS  PubMed  Google Scholar 

  65. Bambha K, Wilson LA, Unalp A, Loomba R, Neuschwander-Tetri BA, Brunt EM, et al. Coffee consumption in NAFLD patients with lower insulin resistance is associated with lower risk of severe fibrosis. Liver Int. 2014;34(8):1250–8.

    Article  CAS  PubMed  Google Scholar 

  66. Alferink LJ, Fittipaldi J, Kiefte-de Jong JC, Taimr P, Hansen BE, Metselaar HJ, et al. Coffee and herbal tea consumption is associated with lower liver stiffness in the general population: The Rotterdam study. J Hepatol. 2017;67(2):339–48.

    Article  CAS  PubMed  Google Scholar 

  67. Zou Y, Zhong L, Hu C, Sheng G. Association between the alanine aminotransferase/aspartate aminotransferase ratio and new-onset non-alcoholic fatty liver disease in a nonobese Chinese population: a population-based longitudinal study. Lipids Health Dis. 2020;19(1):1–10.

    Article  Google Scholar 

  68. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–48.

    Article  CAS  PubMed  Google Scholar 

  69. Romero-Polvo A, Denova-Gutiérrez E, Rivera-Paredez B, Castañón S, Gallegos-Carrillo K, Halley-Castillo E, et al. Association between dietary patterns and insulin resistance in Mexican children and adolescents. Ann Nutr Metab. 2012;61(2):142–50.

    Article  CAS  PubMed  Google Scholar 

  70. De Biase SG, Fernandes SFC, Gianini RJ, Duarte JLG. Vegetarian diet and cholesterol and triglycerides levels. Arq Bras Cardiol. 2007;88(1):35.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was extracted from MSc dissertation, which was approved by School of Nutrition & Food Science, Isfahan University of Medical Sciences. We would like to express our appreciation for all those participating in this study for their sincere cooperation.

Funding

This work was supported by the Isfahan University of Medical Sciences [grant numbers IR.MUI.REC. 1398.279].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirmansour Alavi Naeini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, F., Moosavian, S.P., Djafari, F. et al. The association between major dietary patterns with the risk of non-alcoholic fatty liver disease, oxidative stress and metabolic parameters: A case–control study. J Diabetes Metab Disord 21, 657–667 (2022). https://doi.org/10.1007/s40200-022-01028-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01028-w

Keywords

Navigation