Skip to main content

Advertisement

Log in

Glucose, lipid and oxidative stress lowering activity of the aqueous extract from leafy stems of Cissus polyantha Gilg & Brandt in dexamethasone-induced hyperglycemia in rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus is a metabolic disorder characterised by chronic hyperglycemia. The present research work aimed to evaluate the hypoglycaemic, hypolipidemic and antioxidant effects of leafy stems of Cissus polyantha Gilg & Brandt in insulin resistant rats.

Methods

The oral glucose tolerance test (OGTT) was performed in normal rats. Hyperglycemia was induced for 8 days by a daily subcutaneous injection of dexamethasone (1 mg/kg) one hour after pretreatment of animals with metformin (40 mg/kg) and C. polyantha extract (111, 222 and 444 mg/kg). Body weight, blood glucose, insulin level, lipid profile, insulin biomarkers, cardiovascular indices and oxidative stress biomarkers were evaluated.

Results

For OGTT, the extract (444 mg/kg) produced a significant drop in blood sugar at the 60th (p < 0.01), 90th (p < 0.01) and 120th min (p < 0.05). Morever, the extract at doses of 222 and 111 mg/kg significantly reduced blood sugar at the 60th (p < 0.01) and 90th min (p < 0.05) respectively. Otherwise, C. polyantha (444 and 222 mg/kg) significantly (p < 0.001) increased body weight and decreased blood sugar on the 4th and 8th days of treatment in insulin resistant rats. The extract also significantly decreased (p < 0.001) serum insulin level, hyperlipidemia, insulin resistance index and cardiovascular indices, and increased gluthathione level, and superoxide dismutase and catalase activity.

Conclusion

The aqueous extract of Cissus polyantha leafy stems (AECPLS) possess hypoglycemic, hypolipidemic and antioxidant activities that could justify its use in traditional medicine for the prevention and treatment of diabetes mellitus and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Reaven GM. The insulin resistance syndrome. Curr Atheroscler Rep. 2003;5:364–71.

    PubMed  Google Scholar 

  2. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111:1448–54.

    PubMed  Google Scholar 

  3. Nelly Rivera-Yañez, Rodriguez-Canales M, Nieto-Yañez O, Jimenez-Estrada M, Ibarra-Barajas M, Canales-Martinez M, Rodriguez-Monroy MA. Hypoglycaemic and antioxidant effects of propolis of Chihuahua in a model of experimental diabetes. Evid Based Complement Altern Med. 2018;4360356:10. https://doi.org/10.1155/2018/4360356

  4. International Diabete Federation. Global overview. Diabetes Atlas. 8th ed. 2017. p. 150.

  5. Cheng AYY, Funtus IG. Oral antihyperglycaemic therapy for type 2 diabetes mellitus. Can Med Assoc J. 2005;172:213–26.

    Google Scholar 

  6. Matheka DM, Demaio AR. Complementary and alternative medicine use among diabetic patients in Africa: a Kenyan perspective. Pan Afr Med J. 2013;15:110.

    PubMed  PubMed Central  Google Scholar 

  7. Akhtar FM, Ali MR. Study of the antidiabetic effect of a compound medicinal plant prescription in normal and diabetic rabbit. J Pakistan Med Assoc. 1984;34:239–44.

    CAS  Google Scholar 

  8. Lanjhiyana S, Garabadu D, Ahirwar D, et al. Hypoglycemic activity studies on root extracts of Murraya koenigii root in Alloxan-induced diabetic rats. J Nat Prod Plant Resour. 2011;1:91–104.

    Google Scholar 

  9. Patil AA, Koli AS, Darshana A, Patil B, Narayane CV, Phatak VAA. Evaluation of effect of aqueous slurry of Curculigo orchioides aertn rhizome in streptozotocin induced diabetic rats. J Pharm Res. 2013;7:747–5.

    CAS  Google Scholar 

  10. Burkill H. The useful plants of west tropical africa. Royal Botanic Garden Kew. 2000;5:290.

    Google Scholar 

  11. Sani Y, Musa A, Pateh U, et al. Phytochemical screening and preliminary evaluation of analgesic and anti-inflammatory activities of the methanol root extract of Cissus polyantha. BAJOPAS. 2014;7:19–23.

    Google Scholar 

  12. Mahamad AT, Miaffo D, Poualeu Kamani S, Kamanyi A, Wansi SL. Antioxidant properties and digestive enzyme inhibitory activity of the aqueous extract from leafy stems of Cissus polyantha. Evid Based Complement Altern Med. 2019;2019:1–7. https://doi.org/10.1155/2019/7384532.

    Article  Google Scholar 

  13. Savithramma N, Rao ML, Rukmini K, Devi PS. Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J of Chem Tech Res. 2011;3:1394–402.

    CAS  Google Scholar 

  14. Shannon R, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. Federation Am Societies Experimental Biol J. 2008;22:659–61.

    Google Scholar 

  15. Fofié KC, Nguelefack-Mbuyo EP, Tsabang N, Kamanyi A, Nguelefack BT. Hypoglycemic properties of the aqueous extract from the stem bark of Ceiba pentandra in dexamethasone-induced insulin resistant rats. Evid Based Complement Altern Med. 2018;2018:1–11. https://doi.org/10.1155/2018/4234981.

    Article  Google Scholar 

  16. Matthews DR, Hosker JP, Rudenski AS, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–8.

    CAS  PubMed  Google Scholar 

  17. Ma Y, Wang Y, Huang Q, Ren Q, Chen S, Zhang A, et al. Impaired β cell function in Chinese newly diagnosed type 2 diabetes mellitus with hyperlipidemia. J Diabetes Res. 2014;493039:1–6.

    Google Scholar 

  18. Li B, Lin W, Lin N, Dong X, Liu L. Study of the correlation between serum ferritin levels and the aggregation of metabolic disorders in non-diabetic elderly patients. Exp Ther Med. 2014;7:1671–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Trinder P. Quantitative in vitro determination of cholesterol in serum and plasma. Ann Clin Biochem. 1969;6:24–7.

    CAS  Google Scholar 

  20. Weiber DA, Warnick GR. Measurement of high-density lipoprotein cholesterol. Handbook of lipoprotein testing. Washington: AACC Press; 1997. p. 44–127.

    Google Scholar 

  21. Cole TG, Klotzsch SG, Mcnamara J. Measurement of triglyceride concentration. In: Rifai N, Warnick GR, Dominiczak MH, editors. Handbook of lipoprotein testing. Washington: AACC Press; 1997. p. 115–26.

    Google Scholar 

  22. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentrationof low-density lipoprotein cholesterol in plasma without use of the preparativeultracentrifuge. Clin Chem. 1972;18:499–502.

    CAS  PubMed  Google Scholar 

  23. Rafieian-Kopaei M, Shahinfard N, Rouhi Boroujeni H, Gharipour M, Darvishzadeh-Boroujeni P. Effects of Ferulago angulata extract on serum lipids and lipid peroxidation. Evid Based Complement Alternat Med. 2014; 680856:4. https://doi.org/10.1155/2014/680856.

  24. Kang HT, Kim JK, Kim JY, Linton JA, Yoon JH, Koh SB. Independent association of TG/ HDL-c with urinary albumin excretion in normotensive subjects in a rural Korean population. Clin Chim Acta. 2012;413:319–24.

    CAS  PubMed  Google Scholar 

  25. Barter P, Gotto AM, La Rosa JC. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357:1301–10.

    CAS  PubMed  Google Scholar 

  26. Quantanilha AT, Packer L, Szyszlo DJA, Racnelly TL, Davies KJA. Membrane effects of vitamin E deficiency bioenergetic and surface charge density of skeletal muscle and liver mitochondria. Ann N Y Acad Sci. 1982;393:32–47.

    Google Scholar 

  27. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.

    CAS  PubMed  Google Scholar 

  28. Misra HP, Fridovish I. The role of superoxide anion in the autoxidation of epinephrine and a sample assay for superoxide dismustase. J Biol Chem. 1972;247:3170–5.

    CAS  PubMed  Google Scholar 

  29. Sehirli O, Tozan A, Omurtag GZ, Cetine S, Contuk G, Gedik N, et al. Protective effects of resveratol against naphtylene-induced oxidative stress in mica. Ecoto Environ Safe. 2008;71:301–8.

    CAS  Google Scholar 

  30. Stump CS, Clark SE, Sowers JR. Oxidative stress in insulin-resistant conditions: cardiovascular implications. Treat Endocrinol. 2005;4:343–51.

    CAS  PubMed  Google Scholar 

  31. Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    CAS  PubMed  Google Scholar 

  32. Clark CM Jr, Lee DA. Prevention and treatment of the complications of diabetes mellitus. N Engl J Med. 1995;332:1210–7.

    PubMed  Google Scholar 

  33. Cohen A, Horton ES. Progress in the treatment of type 2 diabetes: new pharmacologic approaches to improve glycemic control. Curr Med Res Opin. 2007;23:905–17.

    CAS  PubMed  Google Scholar 

  34. Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003;26:1277–94.

    CAS  PubMed  Google Scholar 

  35. Gray AM, Flatt PR. Pancreatic and extra-pancreatic effects of the traditional anti-diabetic plant, Medicago sativa (lucerne). Br J Nutr. 1997;78:325–34.

    CAS  PubMed  Google Scholar 

  36. Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr. 2003;133:3275–84.

    Google Scholar 

  37. Sani Y, Musa A, Yaro A, Sani M, Amoley A, Magaji MG. Phytochemical screening and evaluation of analgesic and anti-inflammatory activities of the methanol leaf extract of Cissus polyantha. J Med Sci. 2013;10:1–5.

    Google Scholar 

  38. Pari L, Latha M. Antidiabetic effect of Scoparia dulcis: effect on lipid peroxidation in streptozotocin diabetes. Gen Physiol Biophys. 2005;24:13–26.

    CAS  PubMed  Google Scholar 

  39. Valsa AK, Sudheesh S, Vijayalakshmi NR. Effect of catechin on carbohydrate metabolism. Indian J Biochem Biophys. 1997;34:406–8.

    CAS  PubMed  Google Scholar 

  40. Mahendran P, Shyamala Devi CS. Effect of Garcinia cambogia extract on lipids and lipoprotein composition in dexamethasone administered rats. Indian J Physiol Pharmacol. 2001;45:345–50.

    CAS  PubMed  Google Scholar 

  41. Rossetti L, DeFronzo RA, Gherzi R, et al. Effects of metformin treatment on insulin action in diabetic rats: in vivo and in vitro correlations. Metabolism. 1990;39:425–35.

    CAS  PubMed  Google Scholar 

  42. Ovalle-Magallanes B, Medina-Campos ON, Pedraza-Chaverri J, Mata R. Hypoglycemic and anti hyperglycemic effects of phytopreparations and limonoids from Swieteniahumilis. Phytochemistry. 2015;110:111–9.

    CAS  PubMed  Google Scholar 

  43. Ashpak Tamboli M, Sujit Karpe T, Sohrab Shaikh A, Anil Manikrao M, Dattatraya KV. Hypoglycemic activity of extracts of Oroxylum indicum (L.) vent roots in animal models. Pharmacologyonline. 2011;2:890–9.

    Google Scholar 

  44. Weinstein SP, Wilson CM, Pritsker A, Cushman SW. Dexamethasone inhibitsinsulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism. 1998;47:3–6.

    CAS  PubMed  Google Scholar 

  45. Bailey CJ. Metformin: a useful adjunct to insulin therapy? Diabet Med. 2000;17:83–4.

    CAS  PubMed  Google Scholar 

  46. Jyoti M, Vihas TV, Ravikumar A, Sarita G. Glucose lowering effect of aqueous extract of Enicostemma littorale Blume in diabetes: a possible mechanism of action. J Ethnopharmacol. 2002;81:317–20.

    Google Scholar 

  47. Schacke H, Rehwinkel A. Dissociated glucocorticoid receptor ligands. Curr Opin Investig Drugs. 2004;5:524–8.

    PubMed  Google Scholar 

  48. Ferrannini E, Haffner SM, Mitchell BD, Stern MP. Hyperinsulinaemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia. 1991;34:416–22.

    CAS  PubMed  Google Scholar 

  49. Daly ME, Vale C, Walker M, Alberti KG, Mathers JC. Dietary carbohydrates and insulin sensitivity: a review of the evidence and clinical implications. Am J Clin Nutr. 1997;66:1072–85.

    CAS  PubMed  Google Scholar 

  50. Defronzo RA, Ferrannini E. Insulin resistance: a mullifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabete Care. 1991;14:173–94.

    CAS  Google Scholar 

  51. Geohas J, Daly A, Juturu V, Finch M, Komorowski JR. Chromium picolinate and biotin combination reduces atherogenic index of plasma in patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized clinical trial. Am J Med Sci. 2007;333:145–53.

    PubMed  Google Scholar 

  52. Cooper ME. Pathogenesis, prevention, and treatment of diabetic neuropathy. Lancet. 1998;352:213–9.

    CAS  PubMed  Google Scholar 

  53. Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev. 1998;19:477–90.

    CAS  PubMed  Google Scholar 

  54. Limaye PV, Raghuram N, Sivakami S. Oxidative stress and gene expression of antioxidant enzymes in the renal cortex of streptozotocin induced diabetic rats. Mol Cell Biochem. 2003;243:147–52.

    CAS  PubMed  Google Scholar 

  55. Mates JM, Perez-gomez C, Nunez De Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32:595–603.

    CAS  PubMed  Google Scholar 

  56. Hassan HM. Biosynthesis and regulation of superoxide dismustases. Free Radic Biol Med. 1988;5:377–85.

    CAS  PubMed  Google Scholar 

  57. Karihtala P, Soini Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. Apmis. 2007;115:81–103.

    CAS  PubMed  Google Scholar 

  58. Irudayaraj SS, Sunil C, Duraipandiyan V, Ignacimuthu S. Antidiabetic and antioxidant activities of Toddalia asiatica (L.) lam. Leaves in streptozotocin induced diabetic rats. J Ethnopharmacol. 2012;143:515–23.

    Google Scholar 

  59. Urquiaga I, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biol Res. 2000;33:55–64.

    CAS  PubMed  Google Scholar 

  60. Rajat B. Screening and quantification of phytochemicals and evaluation of antioxidant activity of Albizia chinensis (Vang): one of the tree foliages commonly utilized for feeding to cattle and buffaloes in Mizoram. Int J Curr Microbiol App Sci. 2015;4:305–13.

    Google Scholar 

Download references

Acknowledgments

This work was carried at the Laboratory of Department of Biological Science, Faculty ofSciences, University of Maroua, Cameroon. The authors are grateful to the Head of thislaboratory for providing the facilities, and M. MOUSSA Abame for the purchase of the reagents.

Data of availability

The data analyzed and materials used in this study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

MTA and DA proposed the plant material, harvested and prepared the crude extract. MTA, DM and MO conducted the different tests in laboratory. DM and SKP analyzed the data and drafted the article. AK and SLW corrected the final manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Sylvie Léa Wansi Ngnokam.

Ethics declarations

Ethics approval

All animal experiments were handled according to the Ethic Committee of the Faculty of Sciences of the University of Maroua (Ref. N°14/0261/ Uma/D/FS/VD-RC), Cameroon. The Animal protocol were accomplished in accordance with the guidelines of Cameroonian bioethics committee (reg N°.FWA-IRB00001954) and NIH- Care and Use of Laboratory Animals manual (8th Edition).

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflicts interest related to this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahamad, A.T., Miaffo, D., Poualeu Kamani, S.L. et al. Glucose, lipid and oxidative stress lowering activity of the aqueous extract from leafy stems of Cissus polyantha Gilg & Brandt in dexamethasone-induced hyperglycemia in rats. J Diabetes Metab Disord 19, 1527–1535 (2020). https://doi.org/10.1007/s40200-020-00687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00687-x

Keywords

Navigation