Skip to main content

Advertisement

Log in

The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Re-examine the current metabolic models.

Methods

Review of literature and gene networks.

Results

Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of civilization - cancer, diabetes, obesity and acne - the Implication of Milk, IGF-1 and mTORC1. Maedica (Buchar). 2018;13(4):273-81. https://doi.org/10.26574/maedica.2018.13.4.273.

    Article  Google Scholar 

  2. Ertel A, Tsirigos A, Whitaker-Menezes D, Birbe RC, Pavlides S, Martinez-Outschoorn UE, et al. Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle. 2012;11(2):253-63. https://doi.org/10.4161/cc.11.2.19006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szabadkai G, Duchen MR. Mitochondria mediated cell death in diabetes. Apoptosis. 2009;14(12):1405-23. https://doi.org/10.1007/s10495-009-0363-5.

    Article  CAS  PubMed  Google Scholar 

  4. Song Z, Wang W, Li N, Yan S, Rong K, Lan T, et al. Sphingosine kinase 2 promotes lipotoxicity in pancreatic beta-cells and the progression of diabetes. FASEB J. 2019;33(3):3636-46. https://doi.org/10.1096/fj.201801496R.

    Article  CAS  PubMed  Google Scholar 

  5. Stokes MA. Antoine Lavoisier and the study of respiration: 200 years old. Aust N Z J Surg. 1991;61(3):229-32. https://doi.org/10.1111/j.1445-2197.1991.tb07597.x.

    Article  CAS  PubMed  Google Scholar 

  6. Gladden LB. 200th anniversary of lactate research in muscle. Exerc Sport Sci Rev. 2008;36(3):109-15. https://doi.org/10.1097/JES.0b013e31817c0038.

    Article  PubMed  Google Scholar 

  7. Kompanje EJ, Jansen TC, van der Hoven B, Bakker J. The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814-1869) in January 1843. Intensive Care Med. 2007;33(11):1967-71. https://doi.org/10.1007/s00134-007-0788-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barnett JA. A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850-1880. Yeast. 2000;16(8):755-71. https://doi.org/10.1002/1097-0061(20000615)16:8<755::AID-YEA587>3.0.CO;2-4.

    Article  CAS  PubMed  Google Scholar 

  9. Latour B. Pasteur on lactic acid yeast: a partial semiotic analysis. Configurations. 1993;1(1):129-45.

    CAS  PubMed  Google Scholar 

  10. Vadlakonda L, Reddy VD, Pasupuleti M, Reddanna P. The Pasteur’s Dictum: Nitrogen Promotes Growth and Oxygen Reduces the Need for Sugar. Front Oncol. 2014;4:51. https://doi.org/10.3389/fonc.2014.00051.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fletcher WM. Lactic acid in amphibian muscle. J Physiol. 1907;35(4):247-309. https://doi.org/10.1113/jphysiol.1907.sp001194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fletcher WM. Lactic acid formation, survival respiration and rigor mortis in mammalian muscle. J Physiol. 1913;47(4-5):361-80. https://doi.org/10.1113/jphysiol.1913.sp001629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Warburg O, Wind F, Negelein E. The Metabolism of Tumors in the Body. J Gen Physiol. 1927;8(6):519-30. https://doi.org/10.1085/jgp.8.6.519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14. https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  15. de Bari L, Atlante A. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming. Cell Mol Life Sci. 2018;75(15):2763-76. https://doi.org/10.1007/s00018-018-2831-y.

    Article  CAS  PubMed  Google Scholar 

  16. Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol. 2009;587(Pt 23):5591-600. https://doi.org/10.1113/jphysiol.2009.178350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;101454 https://doi.org/10.1016/j.redox.2020.101454.

  18. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118(12):3930-42. https://doi.org/10.1172/JCI36843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luft R. Oskar Minkowski: discovery of the pancreatic origin of diabetes, 1889. Diabetologia. 1989;32(7):399-401. https://doi.org/10.1007/bf00271257.

    Article  CAS  PubMed  Google Scholar 

  20. Sakula A. Paul Langerhans (1847-1888): a centenary tribute. J R Soc Med. 1988;81(7):414-5.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vecchio I, Tornali C, Bragazzi NL, Martini M. The discovery of insulin: an important milestone in the history of medicine. Front Endocrinol (Lausanne). 2018;(9):613. https://doi.org/10.3389/fendo.2018.00613.

  22. Macleod J. The physiology of insulin and its source in the animal body. Nobel Lecture 1925. 1925.

  23. Himsworth HP. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. Diabet Med. 2011;28(12):1440-4. https://doi.org/10.1111/j.1464-5491.2011.3508.x.

    Article  CAS  PubMed  Google Scholar 

  24. Kido Y, Burks DJ, Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest. 2000;105(2):199-205. https://doi.org/10.1172/JCI7917).

  25. Jelenik T, Sequaris G, Kaul K, Ouwens DM, Phielix E, Kotzka J, et al. Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Diabetes. 2014;63(11):3856-67. https://doi.org/10.2337/db13-1794.

    Article  CAS  PubMed  Google Scholar 

  26. Reaven G. A toast to Sir Harold Himsworth. Diabet Med. 2011;28(12):1436-7. https://doi.org/10.1111/j.1464-5491.2011.03339.x.

    Article  CAS  PubMed  Google Scholar 

  27. Haider S, McIntyre A, van Stiphout RG, Winchester LM, Wigfield S, Harris AL, et al. Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biol. 2016;17(1):140. https://doi.org/10.1186/s13059-016-0999-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deedwania PC. Diabetes is a vascular disease: the role of endothelial dysfunction in pathophysiology of cardiovascular disease in diabetes. Cardiol Clin. 2004;22(4):505-9, v. https://doi.org/10.1016/j.ccl.2004.07.001.

    Article  PubMed  Google Scholar 

  29. Ageno W, Di Minno MN, Ay C, Jang MJ, Hansen JB, Steffen LM, et al. Association between the metabolic syndrome, its individual components, and unprovoked venous thromboembolism: results of a patient-level meta-analysis. Arterioscler Thromb Vasc Biol. 2014;34(11):2478-85. https://doi.org/10.1161/ATVBAHA.114.304085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stewart LK, Kline JA. Metabolic syndrome increases risk of venous thromboembolism recurrence after acute deep vein thrombosis. Blood Adv. 2020;4(1):127-35. https://doi.org/10.1182/bloodadvances.2019000561.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133-223. https://doi.org/10.1152/physrev.00063.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenfeld L. Insulin: discovery and controversy. Clin Chem. 2002;48(12):2270-88.

    CAS  PubMed  Google Scholar 

  33. Riddle MR, Aspiras AC, Gaudenz K, Peuss R, Sung JY, Martineau B, et al. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature. 2018;555(7698):647-51. https://doi.org/10.1038/nature26136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Semenkovich CF. We know more than we van tell about diabetes and vascular disease: The 2016 Edwin Bierman Award Lecture. Diabetes. 2017;66(7):1735-41. https://doi.org/10.2337/db17-0093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montani L, Pereira JA, Norrmen C, Pohl HBF, Tinelli E, Trotzmuller M, et al. De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination. J Cell Biol. 2018;217(4):1353-68. https://doi.org/10.1083/jcb.201706010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dimas P, Montani L, Pereira JA, Moreno D, Trotzmuller M, Gerber J, et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. Elife. 2019;8 https://doi.org/10.7554/eLife.44702.

  37. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27-31.

    CAS  PubMed  Google Scholar 

  38. Gialeli C, Viola M, Barbouri D, Kletsas D, Passi A, Karamanos NK. Dynamic interplay between breast cancer cells and normal endothelium mediates the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Biochim Biophys Acta. 2014;1840(8):2549-59. https://doi.org/10.1016/j.bbagen.2014.02.019.

    Article  CAS  PubMed  Google Scholar 

  39. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057-69. https://doi.org/10.7150/ijbs.7502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kato T, Mizuno S, Ito A. A decrease in glomerular endothelial cells and endothelial-mesenchymal transition during glomerulosclerosis in the Tensin2-deficient mice (ICGN strain). Acta Histochem Cytochem. 2014;47(6):265-71. https://doi.org/10.1267/ahc.14032.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Igari K, Kudo T, Toyofuku T, Inoue Y. The relationship between endothelial dysfunction and endothelial cell markers in peripheral arterial disease. PLoS One. 2016;11(11):e0166840. https://doi.org/10.1371/journal.pone.0166840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9(5):434-49. https://doi.org/10.1111/1753-0407.12521.

    Article  CAS  PubMed  Google Scholar 

  43. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23(2):95-121. https://doi.org/10.1111/micc.12259.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692-702. https://doi.org/10.1161/CIRCRESAHA.115.306361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perbellini F, Watson SA, Bardi I, Terracciano CM. Heterocellularity and cellular cross-talk in the cardiovascular system. Front Cardiovasc Med. 2018;5:143. https://doi.org/10.3389/fcvm.2018.00143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pool CM, Jin Y, Chen B, Liu Y, Nelin LD. Hypoxic-induction of arginase II requires EGF-mediated EGFR activation in human pulmonary microvascular endothelial cells. Physiol Rep. 2018;6(10):e13693. https://doi.org/10.14814/phy2.13693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wellen KE, Thompson CB. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell. 2010;40(2):323-32. https://doi.org/10.1016/j.molcel.2010.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lucena MC, Carvalho-Cruz P, Donadio JL, Oliveira IA, de Queiroz RM, Marinho-Carvalho MM, et al. Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation. J Biol Chem. 2016;291(25):12917-29. https://doi.org/10.1074/jbc.M116.729236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qiu H, Schlegel V. Impact of nutrient overload on metabolic homeostasis. Nutr Rev. 2018;76(9):693-707. https://doi.org/10.1093/nutrit/nuy023.

    Article  PubMed  Google Scholar 

  50. DeBerardinis RJ. Tumor microenvironment, metabolism, and immunotherapy. N Engl J Med. 2020;382(9):869-71. https://doi.org/10.1056/NEJMcibr1914890.

    Article  PubMed  Google Scholar 

  51. Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13(2):183-94. https://doi.org/10.1016/j.cmet.2011.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6(1) https://doi.org/10.1101/cshperspect.a009191.

  53. Glatz JF, Luiken JJ. From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake. Biochimie. 2017;136:21-6. https://doi.org/10.1016/j.biochi.2016.12.007.

    Article  CAS  PubMed  Google Scholar 

  54. Priyadarshini M, Kotlo KU, Dudeja PK, Layden BT. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr Physiol. 2018;8(3):1091-115. https://doi.org/10.1002/cphy.c170050.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ichimura A. Polymorphic variation in FFA receptors: functions and consequences. Handb Exp Pharmacol. 2017;236:133-58. https://doi.org/10.1007/164_2016_57.

    Article  CAS  PubMed  Google Scholar 

  56. Caron A, Reynolds RP, Castorena CM, Michael NJ, Lee CE, Lee S, et al. Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Mol Metab. 2019;27:11-21. https://doi.org/10.1016/j.molmet.2019.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaihara KA, Dickson LM, Jacobson DA, Tamarina N, Roe MW, Philipson LH, et al. beta-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes. 2013;62(5):1527-36. https://doi.org/10.2337/db12-1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Siddappa R, Martens A, Doorn J, Leusink A, Olivo C, Licht R, et al. cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci U S A. 2008;105(20):7281-6. https://doi.org/10.1073/pnas.0711190105.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jewell JL, Fu V, Hong AW, Yu FX, Meng D, Melick CH, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of raptor. Elife. 2019;8 https://doi.org/10.7554/eLife.43038.

  60. Khaled M, Larribere L, Bille K, Aberdam E, Ortonne JP, Ballotti R, et al. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J Biol Chem. 2002;277(37):33690-7. https://doi.org/10.1074/jbc.M202939200.

    Article  CAS  PubMed  Google Scholar 

  61. Nagarajan D, Melo T, Deng Z, Almeida C, Zhao W. ERK/GSK3beta/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic Biol Med. 2012;52(6):983-92. https://doi.org/10.1016/j.freeradbiomed.2011.11.024.

    Article  CAS  PubMed  Google Scholar 

  62. Hino S, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol. 2005;25(20):9063-72. https://doi.org/10.1128/MCB.25.20.9063-9072.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roy L, McDonald CA, Jiang C, Maroni D, Zeleznik AJ, Wyatt TA, et al. Convergence of 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A and glycogen synthase kinase-3beta/beta-catenin signaling in corpus luteum progesterone synthesis. Endocrinology. 2009;150(11):5036-45. https://doi.org/10.1210/en.2009-0771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Omar B, Zmuda-Trzebiatowska E, Manganiello V, Goransson O, Degerman E. Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A. Epac and lipolysis. Cell Signal. 2009;21(5):760-6. https://doi.org/10.1016/j.cellsig.2009.01.015.

    Article  CAS  PubMed  Google Scholar 

  65. Degerman E, Ahmad F, Chung YW, Guirguis E, Omar B, Stenson L, et al. From PDE3B to the regulation of energy homeostasis. Curr Opin Pharmacol. 2011;11(6):676-82. https://doi.org/10.1016/j.coph.2011.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ahmad F, Degerman E, Manganiello VC. Cyclic nucleotide phosphodiesterase 3 signaling complexes. Horm Metab Res. 2012;44(10):776-85. https://doi.org/10.1055/s-0032-1,312,646.

    Article  CAS  PubMed  Google Scholar 

  67. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol. 2005;15(4):277-89. https://doi.org/10.1016/j.semcancer.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  68. Lowenstein CJ, Padalko E. iNOS (NOS2) at a glance. J Cell Sci. 2004;117(Pt 14):2865-7. https://doi.org/10.1242/jcs.01166.

    Article  CAS  PubMed  Google Scholar 

  69. Suzuki T, Suzuki Y, Okuda J, Kurazumi T, Suhara T, Ueda T, et al. Sepsis-induced cardiac dysfunction and beta-adrenergic blockade therapy for sepsis. J Intensive Care. 2017;5:22. https://doi.org/10.1186/s40560-017-0215-2.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Burgdorff AM, Bucher M, Schumann J. Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms. J Int Med Res. 2018;46(4):1303-10. https://doi.org/10.1177/0300060517743836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilson PD, Horster MF. Differential response to hormones of defined distal nephron epithelia in culture. Am J Physiol. 1983;244(3):C166-74. https://doi.org/10.1152/ajpcell.1983.244.3.C166.

    Article  CAS  PubMed  Google Scholar 

  72. Pullamsetti SS, Savai R, Schaefer MB, Wilhelm J, Ghofrani HA, Weissmann N, et al. cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases. Circulation. 2011;123(11):1194-204. https://doi.org/10.1161/CIRCULATIONAHA.110.941484.

    Article  CAS  PubMed  Google Scholar 

  73. Neviere R, Delguste F, Durand A, Inamo J, Boulanger E, Preau S. Abnormal mitochondrial cAMP/PKA signaling is involved in sepsis-induced mitochondrial and myocardial dysfunction. Int J Mol Sci. 2016;17(12) https://doi.org/10.3390/ijms17122075.

  74. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269-70.

    CAS  PubMed  Google Scholar 

  75. Kresge N, Simoni RD, Hill RL. Otto Fritz Meyerhof and the elucidation of the glycolytic pathway. J Biol Chem. 2005;280(4):e3.

    PubMed  Google Scholar 

  76. Simoni RD, Hill RL, Vaughan M. The determination of phosphorus and the discovery of phosphocreatine and ATP: the work of Fiske and SubbaRow. J Biol Chem. 2002;277(32):21e.

    PubMed  Google Scholar 

  77. Langen P, Hucho F. Karl Lohmann and the discovery of ATP. Angew Chem Int Ed Engl. 2008;47(10):1824-7. https://doi.org/10.1002/anie.200702929.

    Article  CAS  PubMed  Google Scholar 

  78. Buicher T, Pfleiderer G. Pyruvate kinase. In: SP C, Kaplan N, editors. Method in enzymology. 1st ed. New York: Academic Press Inc.; 1955. p. 435.

    Google Scholar 

  79. Lipmann F. Metabolic Generation and Utilization of Phosphate Bond Energy. (In: Advances in Enzymology and Related Areas of Molecular Biology. 1941 p. 99-162.)

  80. Szent-Györgyi A. Bioenergetics. J Sci. 1956;124(3227):873-5. https://doi.org/10.1126/science.124.3227.873%.

    Article  Google Scholar 

  81. Albert L. LEHNINGER (1965) Bioenergetics The Molecular Basis of Biological Energy Transformations Second Edition (Published by W. A. Benjamin, New York (1965).

  82. Bastedo GM, Irving L. The inorganic phosphorus of frog muscle in relation to lactacidogen and phosphocreatine. Am J Physiol. 1928;86(3):505-19. https://doi.org/10.1152/ajplegacy.1928.86.3.505.

    Article  CAS  Google Scholar 

  83. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297-308. https://doi.org/10.1016/j.ccr.2012.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huangyang P, Simon MC. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech. 2018;11(8) https://doi.org/10.1242/dmm.033365.

  85. Park JS, Burckhardt CJ, Lazcano R, Solis LM, Isogai T, Li L, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature. 2020;578(7796):621-6. https://doi.org/10.1038/s41586-020-1998-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grüning, NM, Du D, Keller MA, Luisi BF, Ralser M. Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol. 2014;(3):130232. Published 2014 Mar 5. https://doi.org/10.1098/rsob.130232.

  87. Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure. 1998;6(2):195-210. https://doi.org/10.1016/s0969-2126(98)00021-5.

    Article  CAS  PubMed  Google Scholar 

  88. Reis M, Alves CN, Lameira J, Tunon I, Marti S, Moliner V. The catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi elucidated via the QM/MM approach. Phys Chem Chem Phys. 2013;15(11):3772-85. https://doi.org/10.1039/c3cp43968b.

    Article  CAS  PubMed  Google Scholar 

  89. Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HH, Elhassan GO, et al. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience. 2014;1(12):777-802. https://doi.org/10.18632/oncoscience.109.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kvassman J, Pettersson G. Mechanism of 1,3-bisphosphoglycerate transfer from phosphoglycerate kinase to glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1989;186(1-2):265-72. https://doi.org/10.1111/j.1432-1033.1989.tb15205.x.

    Article  CAS  PubMed  Google Scholar 

  91. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2) https://doi.org/10.1042/BSR20150025.

  92. Ramazzotti G, Ratti S, Fiume R, Follo MY, Billi AM, Rusciano I, et al. Phosphoinositide 3 kinase signaling in human stem cells from reprogramming to differentiation: a tale in cytoplasmic and nuclear compartments. Int J Mol Sci. 2019;20(8) https://doi.org/10.3390/ijms20082026.

  93. Cori CG. Carl and Gerty Cori and carbohydrate metabolism. American Chemical Society National Historic Chemical Landmarks. Am Chem Soc. 2004;

  94. Witney TH, Carroll L, Alam IS, Chandrashekran A, Nguyen QD, Sala R, et al. A novel radiotracer to image glycogen metabolism in tumors by positron emission tomography. Cancer Res. 2014;74(5):1319-28. https://doi.org/10.1158/0008-5472.CAN-13-2768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl). 2016;94(2):137-54. https://doi.org/10.1007/s00109-015-1377-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Roach PJ. Glycogen and its metabolism. Curr Mol Med. 2002;2(2):101-20. https://doi.org/10.2174/1566524024605761.

    Article  CAS  PubMed  Google Scholar 

  97. Nikoulina SE, Ciaraldi TP, Mudaliar S, Carter L, Johnson K, Henry RR. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes. 2002;51(7):2190-8. https://doi.org/10.2337/diabetes.51.7.2190.

    Article  CAS  PubMed  Google Scholar 

  98. Ruzzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia. 2005;48(10):2119-30. https://doi.org/10.1007/s00125-005-1886-0.

    Article  CAS  PubMed  Google Scholar 

  99. Hojlund K, Birk JB, Klein DK, Levin K, Rose AJ, Hansen BF, et al. Dysregulation of glycogen synthase COOH- and NH2-terminal phosphorylation by insulin in obesity and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(11):4547-56. https://doi.org/10.1210/jc.2009-0897.

    Article  CAS  PubMed  Google Scholar 

  100. Dey S, Goswami S, Eisa A, Bhattacharjee R, Brothag C, Kline D, et al. Cyclic AMP and glycogen synthase kinase 3 form a regulatory loop in spermatozoa. J Cell Physiol. 2018;233(9):7239-52. https://doi.org/10.1002/jcp.26557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, et al. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J. 2005;24(8):1571-83. https://doi.org/10.1038/sj.emboj.7600633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8(10) https://doi.org/10.3390/cells8101118.

  103. Berzal S, Alique M, Ruiz-Ortega M, Egido J, Ortiz A, Ramos AM. GSK3, snail, and adhesion molecule regulation by cyclosporine A in renal tubular cells. Toxicol Sci. 2012;127(2):425-37. https://doi.org/10.1093/toxsci/kfs108.

    Article  CAS  PubMed  Google Scholar 

  104. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114-31. https://doi.org/10.1016/j.pharmthera.2014.11.016.

    Article  CAS  PubMed  Google Scholar 

  105. Lee J, Kim MS. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract. 2007;77(Suppl 1):S49-57. https://doi.org/10.1016/j.diabres.2007.01.033.

    Article  CAS  PubMed  Google Scholar 

  106. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol. 2009;156(6):885-98. https://doi.org/10.1111/j.1476-5381.2008.00085.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev. Camb Philos Soc. 2015;90(3):927-63. https://doi.org/10.1111/brv.12140.

    Article  PubMed  Google Scholar 

  108. Jin L, Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett. 2019;17(5):4213-21. https://doi.org/10.3892/ol.2019.10112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Samland AK, Sprenger GA. Transaldolase: from biochemistry to human disease. Int J Biochem Cell Biol. 2009;41(7):1482-94. https://doi.org/10.1016/j.biocel.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  110. Kowalik MA, Columbano A, Perra A. Emerging role of the pentose phosphate pathway in hepatocellular carcinoma. Front Oncol. 2017;7:87. https://doi.org/10.3389/fonc.2017.00087.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lee J, Yesilkanal AE, Wynne JP, et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature. 2019;568(7751):254‐258. https://doi.org/10.1038/s41586-019-1005-x.

  112. Wanka C, Steinbach JP, Rieger J. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem. 2012;287(40):33436-46. https://doi.org/10.1074/jbc.M112.384578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rotblat B, Melino G, Knight RA. NRF2 and p53: Januses in cancer? Oncotarget. 2012;3(11):1272-83. https://doi.org/10.18632/oncotarget.754.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pontremoli S, Bonsignore A, Grazi E, Horecker BL. A coupled reaction catalyzed by the enzymes transketolase and transaldolase. J Biol Chem. 1960;235:1881-7.

    CAS  PubMed  Google Scholar 

  115. Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-Mende C, Glass R, et al. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Neuro Oncol. 2016;18(9):1219-29. https://doi.org/10.1093/neuonc/now024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Arriola Apelo SI, Lamming DW. mTORC2 puts its shoulder to krebs’ wheel. Mol Cell. 2016;63(5):723-5. https://doi.org/10.1016/j.molcel.2016.08.016.

    Article  CAS  PubMed  Google Scholar 

  117. Cordero-Espinoza L, Hagen T. Increased concentrations of fructose 2,6-bisphosphate contribute to the Warburg effect in phosphatase and tensin homolog (PTEN)-deficient cells. J Biol Chem. 2013;288(50):36020-8. https://doi.org/10.1074/jbc.M113.510289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Skalecki K, Mularczyk W, Dzugaj A. Kinetic properties of D-fructose-1,6-bisphosphate 1-phosphohydrolase isolated from human muscle. Biochem J. 1995;310(Pt 3):1029-35. https://doi.org/10.1042/bj3101029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang YL, Guo H, Zhang CS, Lin SY, Yin Z, Peng Y, et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 2013;18(4):546-55. https://doi.org/10.1016/j.cmet.2013.09.005.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014;20(3):526-40. https://doi.org/10.1016/j.cmet.2014.06.014.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017;548(7665):112-6. https://doi.org/10.1038/nature23275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Racker E. From Pasteur to Mitchell: a hundred years of bioenergetics. Fed Proc. 1980;39(2):210-5.

    CAS  PubMed  Google Scholar 

  123. Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Hoj PB, et al. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem. 1996;240(1):98-103. https://doi.org/10.1111/j.1432-1033.1996.0098 h.x.

    Article  CAS  PubMed  Google Scholar 

  124. Buchet K, Godinot C. Functional F1-ATPase essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted rho degrees cells. J Biol Chem. 1998;273(36):22983-9. https://doi.org/10.1074/jbc.273.36.22983.

    Article  CAS  PubMed  Google Scholar 

  125. Appleby RD, Porteous WK, Hughes G, James AM, Shannon D, Wei YH, et al. Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. Eur J Biochem. 1999;262(1):108-16. https://doi.org/10.1046/j.1432-1327.1999.00350.x.

    Article  CAS  PubMed  Google Scholar 

  126. Fang J, Uchiumi T, Yagi M, Matsumoto S, Amamoto R, Takazaki S, et al. Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Biosci Rep. 2013;33(2):e00021. https://doi.org/10.1042/BSR20120097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ibsen KH. The Crabtree effect: a review. Cancer Res. 1961;21:829-41.

    CAS  PubMed  Google Scholar 

  128. Wu R, Racker E. Regulatory mechanisms in carbohydrate metabolism. III. Limiting factors in glycolysis of ascites tumor cells. J Biol Chem. 1959;234(5):1029-35.

    CAS  PubMed  Google Scholar 

  129. Loomis WF, Lipmann F. Reversible inhibition of the coupling between phosphorylation and oxidation. J Biol Chem. 1948;173(2):807.

    CAS  PubMed  Google Scholar 

  130. Zhang YY, Zhou LM. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochem Biophys Res Commun. 2012;423(1):26-31. https://doi.org/10.1016/j.bbrc.2012.05.053.

    Article  CAS  PubMed  Google Scholar 

  131. Chen J, Wang A, Chen Q. SirT3 and p53 deacetylation in aging and cancer. J Cell Physiol. 2017;232(9):2308-11. https://doi.org/10.1002/jcp.25669.

    Article  CAS  PubMed  Google Scholar 

  132. Fardini Y, Dehennaut V, Lefebvre T, Issad T. O-GlcNAcylation: a new cancer hallmark? Front Endocrinol (Lausanne). 2013;4:99. https://doi.org/10.3389/fendo.2013.00099.

    Article  Google Scholar 

  133. Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 2019;17(1):52. https://doi.org/10.1186/s12915-019-0671-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Scalise M, Pochini L, Console L, Losso MA, Indiveri C. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96. https://doi.org/10.3389/fcell.2018.00096.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med. 2018;50(4):34. https://doi.org/10.1038/s12276-018-0065-6.

    Article  CAS  PubMed Central  Google Scholar 

  136. Samanta D, Park Y, Andrabi SA, Shelton LM, Gilkes DM, Semenza GL. PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res. 2016;76(15):4430-42. https://doi.org/10.1158/0008-5472.CAN-16-0530.

    Article  CAS  PubMed  Google Scholar 

  137. Vandekeere S, Dubois C, Kalucka J, Sullivan MR, Garcia-Caballero M, Goveia J, et al. Serine synthesis via PHGDH is essential for heme production in endothelial cells. Cell Metab. 2018;28(4):573-87 e13. https://doi.org/10.1016/j.cmet.2018.06.009.

    Article  CAS  Google Scholar 

  138. Aveldano MI, Bazan NG. Molecular species of phosphatidylcholine, −ethanolamine, −serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J Lipid Res. 1983;24(5):620-7.

    CAS  PubMed  Google Scholar 

  139. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev. Cancer. 2013;13(8):572-83. https://doi.org/10.1038/nrc3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reid MA, Allen AE, Liu S, Liberti MV, Liu P, Liu X, et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun. 2018;9(1):5442. https://doi.org/10.1038/s41467-018-07868-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhao E, Hou J, Cui H. Serine-glycine-one-carbon metabolism: vulnerabilities in MYCN-amplified neuroblastoma. Oncogenesis. 2020;9(2):14. https://doi.org/10.1038/s41389-020-0200-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stekol JA, Anderson EI, Weiss S. S-Adenosyl-L-methionine in the synthesis of choline, creatine, and cysteine in vivo and in vitro. J Biol Chem. 1958;233(2):425-9.

    CAS  PubMed  Google Scholar 

  143. Najbauer J, Orpiszewski J, Aswad DW. Molecular aging of tubulin: accumulation of isoaspartyl sites in vitro and in vivo. Biochemistry. 1996;35(16):5183-90. https://doi.org/10.1021/bi953063g.

    Article  CAS  PubMed  Google Scholar 

  144. da Silva RP, Nissim I, Brosnan ME, Brosnan JT. Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab. 2009;296(2):E256-61. https://doi.org/10.1152/ajpendo.90547.2008.

    Article  CAS  PubMed  Google Scholar 

  145. Fraineau S, Palii CG, Allan DS, Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J. 2015;282(9):1605-29. https://doi.org/10.1111/febs.13183.

    Article  CAS  PubMed  Google Scholar 

  146. Alam H, Gu B, Lee MG. Histone methylation modifiers in cellular signaling pathways. Cell Mol Life Sci. 2015;72(23):4577-92. https://doi.org/10.1007/s00018-015-2023-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ruijtenberg S, van den Heuvel S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle. 2016;15(2):196-212. https://doi.org/10.1080/15384101.2015.1120925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, et al. ATP as a biological hydrotrope. Science. 2017;356(6339):753-6. https://doi.org/10.1126/science.aaf6846.

    Article  CAS  PubMed  Google Scholar 

  149. Greiner JV, Glonek T. Hydrotropic function of ATP in the crystalline lens. Exp Eye Res. 2020;190:107862. https://doi.org/10.1016/j.exer.2019.107862.

    Article  CAS  PubMed  Google Scholar 

  150. Gupta J, Kumar S, Li J, Krishna Murthy Karuturi R, Tikoo K. Histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 9 monomethylation (H3K9me1): distribution and their association in regulating gene expression under hyperglycaemic/hyperinsulinemic conditions in 3 T3 cells. Biochimie. 2012;94(12):2656-64. https://doi.org/10.1016/j.biochi.2012.08.011.

    Article  CAS  PubMed  Google Scholar 

  151. Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2015;10(1):95-108. https://doi.org/10.1021/cb500846u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rendina AR, Pietrak B, Smallwood A, Zhao H, Qi H, Quinn C, et al. Mutant IDH1 enhances the production of 2-hydroxyglutarate due to its kinetic mechanism. Biochemistry. 2013;52(26):4563-77. https://doi.org/10.1021/bi400514k.

    Article  CAS  PubMed  Google Scholar 

  153. Dang L, Su SM. Isocitrate dehydrogenase mutation and (R)-2-hydroxyglutarate: from basic discovery to therapeutics development. Annu Rev. Biochem. 2017;86:305-31. https://doi.org/10.1146/annurev-biochem-061516-044732.

    Article  CAS  PubMed  Google Scholar 

  154. Ribeiro ML, Reyes-Garau D, Armengol M, Fernandez-Serrano M, Roue G. Recent advances in the targeting of epigenetic regulators in B cell non-Hodgkin lymphoma. Front Genet. 2019;10:986. https://doi.org/10.3389/fgene.2019.00986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Drysdale GR, Lardy HA. Fatty acid oxidation by a soluble enzyme system from mitochondria. J Biol Chem. 1953;202(1):119-36.

    CAS  PubMed  Google Scholar 

  156. Berg JMTJ, Stryer L. Biochemistry: the utilization of fatty acids as fuel requires three stages of processing. 5th ed. New York: W H Freeman Publishers; 2002.

    Google Scholar 

  157. Krebs HA, Johnson WA. The role of citric acid in intermediate metabolism in animal tissues. FEBS Lett. 1980;117(Suppl):K1-10. https://doi.org/10.4159/harvard.9780674366701.c143.

    Article  PubMed  Google Scholar 

  158. Johnson WA. Aconitase. Biochem J. 1939;33(6):1046-53. https://doi.org/10.1042/bj0331046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Krebs HA, Holzach O. The conversion of citrate into cis-aconitate and isocitrate in the presence of aconitase. Biochem J. 1952;52(3):527-8. https://doi.org/10.1042/bj0520527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ochoa S. Biosynthesis of tricarboxylic acids by carbon dioxide fixation; enzymatic mechanisms. J Biol Chem. 1948;174(1):133-57.

    CAS  PubMed  Google Scholar 

  161. Ochoa S, Weisz-Tabori E. Oxalosuccinic carboxylase. J Biol Chem. 1945;159(1):245-6.

    CAS  Google Scholar 

  162. Ochoa S. Isocitric dehydrogenase and carbon dioxide fixation. J Biol Chem. 1945;159(1):243-4.

    CAS  Google Scholar 

  163. Ochoa S, Weisz-Tabori E. Biosynthesis of tricarboxylic acids by carbon dioxide fixation; oxalosuccinic carboxylase. J Biol Chem. 1948;174(1):123-32.

    CAS  PubMed  Google Scholar 

  164. Stern JR, Ochoa S. Enzymatic synthesis of citric acid by condensation of acetate and oxalacetate. J Biol Chem. 1949;179(1):491.

    CAS  PubMed  Google Scholar 

  165. STERN JR, SHAPIRO B, OCHOA S. Synthesis and breakdown of citric acid with crystalline condensing enzyme. Nature. 1950;166(4218):403‐404. https://doi.org/10.1038/166403b0.

  166. STERN JR, OCHOA S. Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes. J Biol Chem. 1951;191(1):161‐172.

  167. Korkes S, Del Campillo A, Gunsalas IC, Ochoa S. Enzymatic synthesis of citric acid. IV. Pyruvate as acetyl donor. J Biol Chem. 1951;193(2):721-35.

    CAS  PubMed  Google Scholar 

  168. Stern JR, Ochoa S, Lynen F. Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J Biol Chem. 1952;198(1):313-21.

    CAS  PubMed  Google Scholar 

  169. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science. 2012;337(6090):93-6. https://doi.org/10.1126/science.1218530.

    Article  CAS  PubMed  Google Scholar 

  170. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012;337(6090):96-100. https://doi.org/10.1126/science.1218099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. McCommis KS, Chen Z, Fu X, McDonald WG, Colca JR, Kletzien RF, et al. Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab. 2015;22(4):682-94. https://doi.org/10.1016/j.cmet.2015.07.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rauckhorst AJ, Gray LR, Sheldon RD, Fu X, Pewa AD, Feddersen CR, et al. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Mol Metab. 2017;6(11):1468-79. https://doi.org/10.1016/j.molmet.2017.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schell JC, Wisidagama DR, Bensard C, Zhao H, Wei P, Tanner J, et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol. 2017;19(9):1027-36. https://doi.org/10.1038/ncb3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gardner PR, Raineri I, Epstein LB, White CW. Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem. 1995;270(22):13399-405. https://doi.org/10.1074/jbc.270.22.13399.

    Article  CAS  PubMed  Google Scholar 

  175. Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst. 2010;102(13):932-41. https://doi.org/10.1093/jnci/djq187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Icard P, Poulain L, Lincet H. Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta. 2012;1825(1):111-6. https://doi.org/10.1016/j.bbcan.2011.10.007.

    Article  CAS  PubMed  Google Scholar 

  177. Al-Khallaf H. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci. 2017;7:37. https://doi.org/10.1186/s13578-017-0165-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. IDH1-driven reductive carboxylation supports anchorage independence. Cancer Discov. 2016;6(6):570. https://doi.org/10.1158/2159-8290.CD-RW2016-076.

  179. Sun RC, Denko NC. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 2014;19(2):285-92. https://doi.org/10.1016/j.cmet.2013.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhuang L, Lin J, Lu ML, Solomon KR, Freeman MR. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res. 2002;62(8):2227-31.

    CAS  PubMed  Google Scholar 

  181. Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest. 2005;115(4):959-68. https://doi.org/10.1172/JCI19935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lim SC, Parajuli KR, Duong HQ, Choi JE, Han SI. Cholesterol induces autophagic and apoptotic death in gastric carcinoma cells. Int J Oncol. 2014;44(3):805-11. https://doi.org/10.3892/ijo.2014.2246.

    Article  CAS  PubMed  Google Scholar 

  183. Munshi A, Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer. 2013;4(9-10):401-8. https://doi.org/10.1177/1947601913485414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Oliferenko S, Paiha K, Harder T, Gerke V, Schwarzler C, Schwarz H, et al. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol. 1999;146(4):843-54. https://doi.org/10.1083/jcb.146.4.843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Thankamony SP, Knudson W. Acylation of CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis. J Biol Chem. 2006;281(45):34601-9. https://doi.org/10.1074/jbc.M601530200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Babina IS, McSherry EA, Donatello S, Hill AD, Hopkins AM. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res. 2014;16(1):R19. https://doi.org/10.1186/bcr3614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Garantziotis S, Savani RC. Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol. 2019;78-79:1-10. https://doi.org/10.1016/j.matbio.2019.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Espenshade PJ. SREBPs: sterol-regulated transcription factors. J Cell Sci. 2006;119(Pt 6):973-6. https://doi.org/10.1242/jcs02866.

    Article  CAS  PubMed  Google Scholar 

  189. Matsuda M, Korn BS, Hammer RE, Moon YA, Komuro R, Horton JD, et al. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 2001;15(10):1206-16. https://doi.org/10.1101/gad.891301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Shao W, Espenshade PJ. Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP). J Biol Chem. 2014;289(11):7547-57. https://doi.org/10.1074/jbc.M113.545699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci U S A. 2003;100(6):3155-60. https://doi.org/10.1073/pnas.0130116100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochem Cell Biol. 2004;82(1):201-11. https://doi.org/10.1139/o03-090.

    Article  CAS  PubMed  Google Scholar 

  193. Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A. 2007;104(16):6511-8. https://doi.org/10.1073/pnas.0700899104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bloch K. Some aspects of the metabolism of leucine and valine. J Biol Chem. 1944;155(1):255-63.

    CAS  Google Scholar 

  195. Bloch K. Some aspects of the intermediary metabolism of cholesterol. Am Heart J. 1948;36(3):471. https://doi.org/10.1016/0002-8703(48)90376-7.

    Article  CAS  PubMed  Google Scholar 

  196. Zabin I, Bloch K. Studies on the utilization of isovaleric acid in cholesterol synthesis. J Biol Chem. 1951;192(1):267-73.

    CAS  PubMed  Google Scholar 

  197. Elwood JC, Marco A, Van Bruggen JT. Lipid metabolism in the diabetic rat. IV. Metabolism of acetate, acetoacetate, butyrate, and mevalonate in vitro. J Biol Chem. 1960;235:573-7.

    CAS  PubMed  Google Scholar 

  198. Ruzicka L. The isoprene rule and the biogenesis of terpenic compounds. Experientia. 1953;9(10):357-67. https://doi.org/10.1007/bf02167631.

    Article  CAS  PubMed  Google Scholar 

  199. Cornforth JW, Robinson R. Towards the synthesis of cholesterol. Nature. 1947;160(4074):737-9. https://doi.org/10.1038/160737a0.

    Article  CAS  PubMed  Google Scholar 

  200. Bonner J, Arreguin B. The biochemistry of rubber formation in the guayule; rubber formation in seedlings. Arch Biochem. 1949;21(1):109-24.

    CAS  PubMed  Google Scholar 

  201. Rosenthal J, Angel A, Farkas J. Metabolic fate of leucine: a significant sterol precursor in adipose tissue and muscle. Am J Physiol. 1974;226(2):411-8. https://doi.org/10.1152/ajplegacy.1974.226.2.411.

    Article  CAS  PubMed  Google Scholar 

  202. Bloch K. Summing up. Annu Rev. Biochem. 1987;56:1-19. https://doi.org/10.1146/annurev.bi.56.070187.000245.

    Article  CAS  PubMed  Google Scholar 

  203. Bloch K. The biological synthesis of cholesterol. Science. 1965;150(3692):19-28. https://doi.org/10.1126/science.150.3692.19.

    Article  CAS  PubMed  Google Scholar 

  204. Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52(1):6-34. https://doi.org/10.1194/jlr.R009548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys. 2011;505(2):131-43. https://doi.org/10.1016/j.abb.2010.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Okamura E, Tomita T, Sawa R, Nishiyama M, Kuzuyama T. Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proc Natl Acad Sci U S A. 2010;107(25):11265-70. https://doi.org/10.1073/pnas.1000532107.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Chen HW, Leonard DA, Fischer RT, Trzaskos JM. A mammalian mutant cell lacking detectable lanosterol 14 alpha-methyl demethylase activity. J Biol Chem. 1988;263(3):1248-54.

    CAS  PubMed  Google Scholar 

  208. Castellano BM, Thelen AM, Moldavski O, Feltes M, van der Welle RE, Mydock-McGrane L, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science. 2017;355(6331):1306-11. https://doi.org/10.1126/science.aag1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lim CY, Davis OB, Shin HR, Zhang J, Berdan CA, Jiang X, et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat Cell Biol. 2019;21(10):1206-18. https://doi.org/10.1038/s41556-019-0391-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Xu J, Dang Y, Ren YR, Liu JO. Cholesterol trafficking is required for mTOR activation in endothelial cells. Proc Natl Acad Sci U S A. 2010;107(10):4764-9. https://doi.org/10.1073/pnas.0910872107.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Chen L, Ma MY, Sun M, Jiang LY, Zhao XT, Fang XX, et al. Endogenous sterol intermediates of the mevalonate pathway regulate HMGCR degradation and SREBP-2 processing. J Lipid Res. 2019;60(10):1765-75. https://doi.org/10.1194/jlr.RA119000201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ananieva EA, Powell JD, Hutson SM. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond. Adv Nutr. 2016;7(4):798S-805S. https://doi.org/10.3945/an.115.011221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Heimann E, Nyman M, Palbrink AK, Lindkvist-Petersson K, Degerman E. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte. 2016;5(4):359-68. https://doi.org/10.1080/21623945.2016.1252011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Takakuwa A, Nakamura K, Kikuchi M, Sugimoto R, Ohira S, Yokoi Y, et al. Butyric acid and leucine induce alpha-defensin secretion from small intestinal paneth cells. Nutrients. 2019;11(11) https://doi.org/10.3390/nu11112817.

  215. Hegardt FG. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem J. 1999;338(Pt 3):569-82.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Arnedo M, Menao S, Puisac B, Teresa-Rodrigo ME, Gil-Rodriguez MC, Lopez-Vinas E, et al. Characterization of a novel HMG-CoA lyase enzyme with a dual location in endoplasmic reticulum and cytosol. J Lipid Res. 2012;53(10):2046-56. https://doi.org/10.1194/jlr.M025700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Luo W, Qin L, Li B, et al. Inactivation of HMGCL promotes proliferation and metastasis of nasopharyngeal carcinoma by suppressing oxidative stress. Sci Rep. 2017;7(1):11954. Published 2017 Sep 20. https://doi.org/10.1038/s41598-017-11025-2.

  218. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease Nat Rev Mol Cell Biol. 2020;21(4):183‐203. [published correction appears in Nat Rev Mol Cell Biol. 2020. https://doi.org/10.1038/s41580-019-0199-y.

  219. Cho CS, Kowalsky AH, Namkoong S, Park SR, Wu S, Kim B, et al. Concurrent activation of growth factor and nutrient arms of mTORC1 induces oxidative liver injury. Cell Discov. 2019;5:60. https://doi.org/10.1038/s41421-019-0131-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Landi F, Calvani R, Tosato M, Martone AM, Ortolani E, Savera G, et al. Protein intake and muscle health in old age: from biological plausibility to clinical evidence. Nutrients. 2016;8(5) https://doi.org/10.3390/nu8050295.

  221. Lee M, Kim JH, Yoon I, Lee C, Fallahi Sichani M, Kang JS, et al. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway. Proc Natl Acad Sci U S A. 2018;115(23):E5279-E88. https://doi.org/10.1073/pnas.1801287115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yoon I, Nam M, Kim HK, Moon HS, Kim S, Jang J, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1. Science. 2020;367(6474):205-10. https://doi.org/10.1126/science.aau2753.

    Article  CAS  PubMed  Google Scholar 

  223. Houthuijzen JM, Daenen LG, Roodhart JM, Voest EE. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer. 2012;106(12):1901-6. https://doi.org/10.1038/bjc.2012.201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923. https://doi.org/10.1155/2018/5416923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Mandal S, Lindgren AG, Srivastava AS, Clark AT, Banerjee U. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells. 2011;29(3):486-95. https://doi.org/10.1002/stem.590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81-94. https://doi.org/10.1016/j.cmet.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  227. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107-20. https://doi.org/10.1016/j.cell.2006.05.036.

    Article  CAS  PubMed  Google Scholar 

  228. Xie JM, Li B, Yu HP, Gao QG, Li W, Wu HR, et al. TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy. Cancer Res. 2014;74(18):5127-38. https://doi.org/10.1158/0008-5472.CAN-13-3517.

    Article  CAS  PubMed  Google Scholar 

  229. Liu Z, Wu Y, Zhang Y, Yuan M, Li X, Gao J, et al. TIGAR promotes tumorigenesis and protects tumor cells from oxidative and metabolic stresses in gastric cancer. Front Oncol. 2019;9:1258. https://doi.org/10.3389/fonc.2019.01258.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Haines DS. The mdm2 proto-oncogene. Leuk Lymphoma. 1997;26(3-4):227-38. https://doi.org/10.3109/10428199709051772.

    Article  CAS  PubMed  Google Scholar 

  231. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev. Cancer. 2009;9(10):749-58. https://doi.org/10.1038/nrc2723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Rothfuss O, Fischer H, Hasegawa T, Maisel M, Leitner P, Miesel F, et al. Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet. 2009;18(20):3832-50. https://doi.org/10.1093/hmg/ddp327.

    Article  CAS  PubMed  Google Scholar 

  233. Garza-Lombo C, Pappa A, Panayiotidis MI, Franco R. Redox homeostasis, oxidative stress and mitophagy. Mitochondrion. 2020;51:105-17. https://doi.org/10.1016/j.mito.2020.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun. 2013;4:2308. https://doi.org/10.1038/ncomms3308.

    Article  CAS  PubMed  Google Scholar 

  235. Lee JY, Kapur M, Li M, Choi MC, Choi S, Kim HJ, et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J Cell Sci. 2014;127(Pt 22):4954-63. https://doi.org/10.1242/jcs.157321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Mathieu J, Zhou W, Xing Y, et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell. 2014;14(5):592-605. https://doi.org/10.1016/j.stem.2014.02.012.

  237. Timon-Gomez A, Nyvltova E, Abriata LA, Vila AJ, Hosler J, Barrientos A. Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev Biol. 2018;76:163-78. https://doi.org/10.1016/j.semcdb.2017.08.055.

    Article  CAS  PubMed  Google Scholar 

  238. Rajendran R, Garva R, Ashour H, Leung T, Stratford I, Krstic-Demonacos M, et al. Acetylation mediated by the p300/CBP-associated factor determines cellular energy metabolic pathways in cancer. Int J Oncol. 2013;42(6):1961-72. https://doi.org/10.3892/ijo.2013.1907.

    Article  CAS  PubMed  Google Scholar 

  239. Gao X, Wang H, Yang JJ, Liu X, Liu ZR. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell. 2012;45(5):598-609. https://doi.org/10.1016/j.molcel.2012.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Demaria M, Poli V. PKM2, STAT3 and HIF-1alpha: the Warburg’s vicious circle. JAKSTAT. 2012;1(3):194-6. https://doi.org/10.4161/jkst.20662.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Rubini E, Altieri F, Chichiarelli S, Giamogante F, Carissimi S, Paglia G, et al. STAT3, a hub protein of cellular signaling pathways, is triggered by beta-hexaclorocyclohexane. Int J Mol Sci. 2018;19(7) https://doi.org/10.3390/ijms19072108.

  242. Zimna A, Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed Res Int. 2015;2015:549412. https://doi.org/10.1155/2015/549412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117-33. https://doi.org/10.1177/1947601911423654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650-3. https://doi.org/10.1126/science.1126863.

    Article  CAS  PubMed  Google Scholar 

  245. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, et al. NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol. 2011;13(10):1272-9. https://doi.org/10.1038/ncb2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Carrasco-Garcia E, Moreno M, Moreno-Cugnon L, Matheu A. Increased Arf/p53 activity in stem cells, aging and cancer. Aging Cell. 2017;16(2):219-25. https://doi.org/10.1111/acel.12574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wang P, Li CG, Qi Z, Cui D, Ding S. Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle. Exp Physiol. 2016;101(3):410-20. https://doi.org/10.1113/EP085493.

    Article  CAS  PubMed  Google Scholar 

  248. Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017;545(7653):229-33. https://doi.org/10.1038/nature22312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Levine AJ, Berger SL. The interplay between epigenetic changes and the p53 protein in stem cells. Genes Dev. 2017;31(12):1195-201. https://doi.org/10.1101/gad.298984.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 2010;28(4):721-33. https://doi.org/10.1002/stem.404.

    Article  CAS  PubMed  Google Scholar 

  251. Wang H, Lu J, Kulkarni S, Zhang W, Gorka JE, Mandel JA, et al. Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts. J Biol Chem. 2019;294(14):5466-86. https://doi.org/10.1074/jbc.RA118.005200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, et al. A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A. 2006;103(46):17378-83. https://doi.org/10.1073/pnas.0604708103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23(5):537-48. https://doi.org/10.1101/gad.1756509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ramadoss S, Chen X, Wang CY. Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J Biol Chem. 2012;287(53):44508-17. https://doi.org/10.1074/jbc.M112.424903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Sciacovelli M, Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 2017;284(19):3132-44. https://doi.org/10.1111/febs.14090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Anan K, Hino S, Shimizu N, Sakamoto A, Nagaoka K, Takase R, et al. LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation. Nucleic Acids Res. 2018;46(11):5441-54. https://doi.org/10.1093/nar/gky234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Swick AG, Lane MD. Identification of a transcriptional repressor down-regulated during preadipocyte differentiation. Proc Natl Acad Sci U S A. 1992;89(17):7895-9. https://doi.org/10.1073/pnas.89.17.7895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Christianson JL, Nicoloro S, Straubhaar J, Czech MP. Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3 T3-L1 cells. J Biol Chem. 2008;283(5):2906-16. https://doi.org/10.1074/jbc.M705656200.

    Article  CAS  PubMed  Google Scholar 

  259. Kaestner KH, Ntambi JM, Kelly TJ Jr, Lane MD. Differentiation-induced gene expression in 3 T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem. 1989;264(25):14755-61.

    CAS  PubMed  Google Scholar 

  260. Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong SJ, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531(7592):53-8. https://doi.org/10.1038/nature17173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Beyaz S, Yilmaz OH. Molecular Pathways: Dietary Regulation of Stemness and Tumor Initiation by the PPAR-delta Pathway. Clin Cancer Res. 2016;22(23):5636-41. https://doi.org/10.1158/1078-0432.CCR-16-0775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Broer S, Broer A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J. 2017;474(12):1935-63. https://doi.org/10.1042/BCJ20160822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290-303. https://doi.org/10.1016/j.cell.2010.02.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, et al. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J. 2009;28(5):477-89. https://doi.org/10.1038/emboj.2008.308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Harding A, Giles N, Burgess A, Hancock JF, Gabrielli BG. Mechanism of mitosis-specific activation of MEK1. J Biol Chem. 2003;278(19):16747-54. https://doi.org/10.1074/jbc.M301015200.

    Article  CAS  PubMed  Google Scholar 

  266. Eskelinen EL, Prescott AR, Cooper J, Brachmann SM, Wang L, Tang X, et al. Inhibition of autophagy in mitotic animal cells. Traffic. 2002;3(12):878-93. https://doi.org/10.1034/j.1600-0854.2002.31204.x.

    Article  CAS  PubMed  Google Scholar 

  267. Neufeld TP. Autophagy and cell growth--the yin and yang of nutrient responses. J Cell Sci. 2012;125(Pt 10):2359-68. https://doi.org/10.1242/jcs.103333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol. 2017;7:51. https://doi.org/10.3389/fonc.2017.00051.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129(13):2475-81. https://doi.org/10.1242/jcs.146365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Willett R, Martina JA, Zewe JP, Wills R, Hammond GRV, Puertollano R. TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes. Nat Commun. 2017;8(1):1580. https://doi.org/10.1038/s41467-017-01871-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Odle RI, Walker SA, Oxley D, Kidger AM, Balmanno K, Gilley R, et al. An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis. Mol Cell. 2020;77(2):228-40 e7. https://doi.org/10.1016/j.molcel.2019.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Brugues J, Nuzzo V, Mazur E, Needleman DJ. Nucleation and transport organize microtubules in metaphase spindles. Cell. 2012;149(3):554-64. https://doi.org/10.1016/j.cell.2012.03.027.

    Article  CAS  PubMed  Google Scholar 

  273. Barisic M, Maiato H. The tubulin code: a navigation system for chromosomes during mitosis. Trends Cell Biol. 2016;26(10):766-75. https://doi.org/10.1016/j.tcb.2016.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Petry S. Mechanisms of mitotic spindle assembly. Annu Rev. Biochem. 2016;85:659-83. https://doi.org/10.1146/annurev-biochem-060815-014528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem. 2009;109(3):683-93. https://doi.org/10.1111/j.1471-4159.2009.06013.x.

    Article  CAS  PubMed  Google Scholar 

  276. Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev. Mol Cell Biol. 2011;12(12):773-86. https://doi.org/10.1038/nrm3227.

    Article  CAS  PubMed  Google Scholar 

  277. Liu N, Xiong Y, Ren Y, Zhang L, He X, Wang X, et al. Proteomic profiling and functional characterization of multiple post-translational modifications of tubulin. J Proteome Res. 2015;14(8):3292-304. https://doi.org/10.1021/acs.jproteome.5b00308.

    Article  CAS  PubMed  Google Scholar 

  278. Ferreira LT, Figueiredo AC, Orr B, Lopes D, Maiato H. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol. 2018;144:33-74. https://doi.org/10.1016/bs.mcb.2018.03.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Chance B, Hollunger G. The interaction of energy and electron transfer reactions in mitochondria. I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem. 1961;236:1534-43.

    CAS  PubMed  Google Scholar 

  280. Chance B, Hollunger G. The interaction of energy and electron transfer reactions in mitochondria. III. Substrate requirements for pyridine nucleotide reduction in mitochondria. J Biol Chem. 1961;236:1555-61.

    CAS  PubMed  Google Scholar 

  281. Klingenberg M, Echtay KS. Uncoupling proteins: the issues from a biochemist point of view. Biochim Biophys Acta. 2001;1504(1):128-43. https://doi.org/10.1016/s0005-2728(00)00242-5.

    Article  CAS  PubMed  Google Scholar 

  282. Huang SG, Klingenberg M. Two-stage nucleotide binding mechanism and its implications to H+ transport inhibition of the uncoupling protein from brown adipose tissue mitochondria. Biochemistry. 1996;35(24):7846-54. https://doi.org/10.1021/bi960244p.

    Article  CAS  PubMed  Google Scholar 

  283. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A. 2014;111(3):960-5. https://doi.org/10.1073/pnas.1317400111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Scialo F, Fernandez-Ayala DJ, Sanz A. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol. 2017;8:428. https://doi.org/10.3389/fphys.2017.00428.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Lobo-Jarne T, Ugalde C. Respiratory chain supercomplexes: structures, function and biogenesis. Semin Cell Dev Biol. 2018;76:179-90. https://doi.org/10.1016/j.semcdb.2017.07.021.

    Article  CAS  PubMed  Google Scholar 

  286. Protasoni M, Perez-Perez R, Lobo-Jarne T, Harbour ME, Ding S, Penas A, et al. Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO J. 2020;39(3):e102817. https://doi.org/10.15252/embj.2019102817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50-9. https://doi.org/10.1016/j.ab.2017.07.009.

    Article  CAS  PubMed  Google Scholar 

  288. Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019;44(1):3-15. https://doi.org/10.3892/ijmm.2019.4188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Rustin P, Munnich A, Rotig A. Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur J Hum Genet. 2002;10(5):289-91. https://doi.org/10.1038/sj.ejhg.5200793.

    Article  CAS  PubMed  Google Scholar 

  290. Bezawork-Geleta A, Wen H, Dong L, Yan B, Vider J, Boukalova S, et al. Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints. Nat Commun. 2018;9(1):2221. https://doi.org/10.1038/s41467-018-04603-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Powers JF, Cochran B, Baleja JD, Sikes HD, Zhang X, Lomakin I, et al. A unique model for SDH-deficient GIST: an endocrine-related cancer. Endocr Relat Cancer. 2018;25(11):943-54. https://doi.org/10.1530/ERC-18-0115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Kluckova K, Sticha M, Cerny J, Mracek T, Dong L, Drahota Z, et al. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis. 2015;6:e1749. https://doi.org/10.1038/cddis.2015.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Kruspig B, Valter K, Skender B, Zhivotovsky B, Gogvadze V. Targeting succinate:ubiquinone reductase potentiates the efficacy of anticancer therapy. Biochim Biophys Acta. 2016;1863(8):2065-71. https://doi.org/10.1016/j.bbamcr.2016.04.026.

    Article  CAS  PubMed  Google Scholar 

  294. Speijer D, Manjeri GR, Szklarczyk R. How to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1646):20130446. https://doi.org/10.1098/rstb.2013.0446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Speijer D. Being right on Q: shaping eukaryotic evolution. Biochem J. 2016;473(22):4103-27. https://doi.org/10.1042/BCJ20160647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Wang Y, Palmfeldt J, Gregersen N, Makhov AM, Conway JF, Wang M, et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem. 2019;294(33):12380-91. https://doi.org/10.1074/jbc.RA119.008680.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75-87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036.

    Article  CAS  PubMed  Google Scholar 

  298. Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016;8:205-15. https://doi.org/10.1016/j.redox.2016.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Khutornenko AA, Roudko VV, Chernyak BV, Vartapetian AB, Chumakov PM, Evstafieva AG. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc Natl Acad Sci U S A. 2010;107(29):12828-33. https://doi.org/10.1073/pnas.0910885107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Khutornenko AA, Dalina AA, Chernyak BV, Chumakov PM, Evstafieva AG. The role of dihydroorotate dehydrogenase in apoptosis induction in response to inhibition of the mitochondrial respiratory chain complex III. Acta Naturae. 2014;6(1):69-75.

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernandez-Fernandez C, Mourino-Bayolo D. Mitochondrial beta-oxidation of saturated fatty acids in humans. Mitochondrion. 2019;46:73-90. https://doi.org/10.1016/j.mito.2018.02.009.

    Article  CAS  PubMed  Google Scholar 

  302. Siebels I, Drose S. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim Biophys Acta. 2013;1827(10):1156-64. https://doi.org/10.1016/j.bbabio.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  303. Grivennikova VG, Kozlovsky VS, Vinogradov AD. Respiratory complex II: ROS production and the kinetics of ubiquinone reduction. Biochim Biophys Acta Bioenerg. 2017;1858(2):109-17. https://doi.org/10.1016/j.bbabio.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  304. MacDonald MJ, Brown LJ. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch Biochem Biophys. 1996;326(1):79-84. https://doi.org/10.1006/abbi.1996.0049.

    Article  CAS  PubMed  Google Scholar 

  305. Tanner JJ, Fendt SM, Becker DF. The proline cycle as a potential cancer therapy target. Biochemistry. 2018;57(25):3433-44. https://doi.org/10.1021/acs.biochem.8b00215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem. 2004;279(32):33035-8. https://doi.org/10.1074/jbc.R400007200.

    Article  CAS  PubMed  Google Scholar 

  307. Flores A, Schell J, Krall AS, Jelinek D, Miranda M, Grigorian M, et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat Cell Biol. 2017;19(9):1017-26. https://doi.org/10.1038/ncb3575.

    Article  CAS  PubMed  Google Scholar 

  308. Tai Y, Cao F, Li M, Li P, Xu T, Wang X, et al. Enhanced mitochondrial pyruvate transport elicits a robust ROS production to sensitize the antitumor efficacy of interferon-gamma in colon cancer. Redox Biol. 2019;20:451-7. https://doi.org/10.1016/j.redox.2018.10.024.

    Article  CAS  PubMed  Google Scholar 

  309. Vanderperre B, Herzig S, Krznar P, Horl M, Ammar Z, Montessuit S, et al. Embryonic lethality of mitochondrial pyruvate carrier 1 deficient mouse can be rescued by a ketogenic diet. PLoS Genet. 2016;12(5):e1006056. https://doi.org/10.1371/journal.pgen.1006056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Zou S, Lang T, Zhang B, Huang K, Gong L, Luo H, et al. Fatty acid oxidation alleviates the energy deficiency caused by the loss of MPC1 in MPC1(± ) mice. Biochem Biophys Res Commun. 2018;495(1):1008-13. https://doi.org/10.1016/j.bbrc.2017.11.134.

    Article  CAS  PubMed  Google Scholar 

  311. Zhou X, Xiong ZJ, Xiao SM, Zhou J, Ding Z, Tang LC, et al. Overexpression of MPC1 inhibits the proliferation, migration, invasion, and stem cell-like properties of gastric cancer cells. Onco Targets Ther. 2017;10:5151-63. https://doi.org/10.2147/OTT.S148681.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Ohashi T, Eguchi H, Kawamoto K, Konno M, Asai A, Colvin H, et al. Mitochondrial pyruvate carrier modulates the epithelial-mesenchymal transition in cholangiocarcinoma. Oncol Rep. 2018;39(3):1276-82. https://doi.org/10.3892/or.2017.6172.

    Article  CAS  PubMed  Google Scholar 

  313. Gray LR, Sultana MR, Rauckhorst AJ, Oonthonpan L, Tompkins SC, Sharma A, et al. Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell Metab. 2015;22(4):669-81. https://doi.org/10.1016/j.cmet.2015.07.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Watford M, Smith EM, Erbelding EJ. The regulation of phosphate-activated glutaminase activity and glutamine metabolism in the streptozotocin-diabetic rat. Biochem J. 1984;224(1):207-14. https://doi.org/10.1042/bj2240207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Mates JM, Segura JA, Martin-Rufian M, Campos-Sandoval JA, Alonso FJ, Marquez J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med. 2013;13(4):514-34.

    CAS  PubMed  Google Scholar 

  316. Xiang L, Xie G, Liu C, Zhou J, Chen J, Yu S, et al. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim Biophys Acta. 2013;1833(12):2996-3005. https://doi.org/10.1016/j.bbamcr.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  317. Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F. Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One. 2009;4(3):e4715. https://doi.org/10.1371/journal.pone.0004715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Tran TQ, Lowman XH, Reid MA, Mendez-Dorantes C, Pan M, Yang Y, et al. Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction. Oncogene. 2017;36(14):1991-2001. https://doi.org/10.1038/onc.2016.360.

    Article  CAS  PubMed  Google Scholar 

  319. Sena CM, Pereira AM, Seica R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta. 2013;1832(12):2216-31. https://doi.org/10.1016/j.bbadis.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  320. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev. Cancer. 2016;16(10):619-34. https://doi.org/10.1038/nrc.2016.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Szeliga M, Bogacinska-Karas M, Rozycka A, Hilgier W, Marquez J, Albrecht J. Silencing of GLS and overexpression of GLS2 genes cooperate in decreasing the proliferation and viability of glioblastoma cells. Tumour Biol. 2014;35(3):1855-62. https://doi.org/10.1007/s13277-013-1247-4.

    Article  CAS  PubMed  Google Scholar 

  322. Szeliga M, Albrecht J. Opposing roles of glutaminase isoforms in determining glioblastoma cell phenotype. Neurochem Int. 2015;88:6-9. https://doi.org/10.1016/j.neuint.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  323. Katt WP, Lukey MJ, Cerione RA. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Med Chem. 2017;9(2):223-43. https://doi.org/10.4155/fmc-2016-0190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Saha SK, Islam SMR, Abdullah-Al-Wadud M, Islam S, Ali F, Park KS. Multiomics analysis reveals that GLS and GLS2 differentially modulate the clinical outcomes of cancer. J Clin Med. 2019;8(3) https://doi.org/10.3390/jcm8030355.

  325. Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, et al. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A. 2012;109(4):1092-7. https://doi.org/10.1073/pnas.1112495109.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Szeliga M, Cwikla J, Obara-Michlewska M, Cichocki A, Albrecht J. Glutaminases in slowly proliferating gastroenteropancreatic neuroendocrine neoplasms/tumors (GEP-NETs): Selective overexpression of mRNA coding for the KGA isoform. Exp Mol Pathol. 2016;100(1):74-8. https://doi.org/10.1016/j.yexmp.2015.11.017.

    Article  CAS  PubMed  Google Scholar 

  327. Bentley-DeSousa A, Holinier C, Moteshareie H, Tseng YC, Kajjo S, Nwosu C, et al. A screen for candidate targets of lysine polyphosphorylation uncovers a conserved network implicated in ribosome biogenesis. Cell Rep. 2018;22(13):3427-39. https://doi.org/10.1016/j.celrep.2018.02.104.

    Article  CAS  PubMed  Google Scholar 

  328. McCarthy L, Bentley-DeSousa A, Denoncourt A, Tseng YC, Gabriel M, Downey M. Proteins required for vacuolar function are targets of lysine polyphosphorylation in yeast. FEBS Lett. 2020;594(1):21-30. https://doi.org/10.1002/1873-3468.13588.

    Article  CAS  PubMed  Google Scholar 

  329. Zhang Z, Liu R, Shuai Y, et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer. 2020;122(1):82-93 https://doi.org/10.1038/s41416-019-0637-9.

  330. Zou H, Chen Q, Zhang A, Wang S, Wu H, Yuan Y, et al. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis. 2019;10(3):148. https://doi.org/10.1038/s41419-019-1324-8.

    Article  PubMed  PubMed Central  Google Scholar 

  331. Li X, Han G, Li X, Kan Q, Fan Z, Li Y, et al. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells. Oncotarget. 2017;8(28):46363-80. https://doi.org/10.18632/oncotarget.18199.

  332. Sandoval IT, Delacruz RG, Miller BN, Hill S, Olson KA, Gabriel AE, et al. A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC). Elife. 2017;6 https://doi.org/10.7554/eLife.22706.

  333. Rauckhorst AJ, Taylor EB. Mitochondrial pyruvate carrier function and cancer metabolism. Curr Opin Genet Dev. 2016;38:102-9. https://doi.org/10.1016/j.gde.2016.05.003.

  334. Icard P, Lincet H. The reduced concentration of citrate in cancer cells: an indicator of cancer aggressiveness and a possible therapeutic target. Drug Resist Updat. 2016;29:47-53. https://doi.org/10.1016/j.drup.2016.09.003.

    Article  PubMed  Google Scholar 

  335. Song M, Kim SH, Im CY, Hwang HJ. Recent development of small molecule glutaminase inhibitors. Curr Top Med Chem. 2018;18(6):432-43. https://doi.org/10.2174/1568026618666180525100830.

    Article  CAS  PubMed  Google Scholar 

  336. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13(4):890-901. https://doi.org/10.1158/1535-7163.MCT-13-0870.

    Article  CAS  PubMed  Google Scholar 

  337. Hoerner CR, Chen VJ, Fan AC. The ‘Achilles Heel’ of metabolism in renal cell carcinoma: glutaminase inhibition as a rational treatment strategy. Kidney Cancer. 2019;3(1):15-29. https://doi.org/10.3233/KCA-180043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Grinde MT, Hilmarsdottir B, Tunset HM, Henriksen IM, Kim J, Haugen MH, et al. Glutamine to proline conversion is associated with response to glutaminase inhibition in breast cancer. Breast Cancer Res. 2019;21(1):61. https://doi.org/10.1186/s13058-019-1141-0.

    Article  PubMed  PubMed Central  Google Scholar 

  339. Haider L, Zrzavy T, Hametner S, Hoftberger R, Bagnato F, Grabner G, et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(Pt 3):807-15. https://doi.org/10.1093/brain/awv398.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Desai RA, Davies AL, Tachrount M, Kasti M, Laulund F, Golay X, et al. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann Neurol. 2016;79(4):591-604. https://doi.org/10.1002/ana.24607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell. 2016;166(5):1324-37 e11. https://doi.org/10.1016/j.cell.2016.07.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T, et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell. 2015;60(2):195-207. https://doi.org/10.1016/j.molcel.2015.08.013.

    Article  CAS  PubMed  Google Scholar 

  343. Montal ED, Dewi R, Bhalla K, Ou L, Hwang BJ, Ropell AE, et al. PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth. Mol Cell. 2015;60(4):571-83. https://doi.org/10.1016/j.molcel.2015.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, et al. A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab. 2018;28(5):721-36 e6. https://doi.org/10.1016/j.cmet.2018.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Martins TL, Chitto AL, Rossetti CL, Brondani CK, Kucharski LC, Da Silva RS. Effects of hypo- or hyperosmotic stress on lipid synthesis and gluconeogenic activity in tissues of the crab Neohelice granulata. Comp Biochem Physiol A Mol Integr Physiol. 2011;158(4):400-5. https://doi.org/10.1016/j.cbpa.2010.11.023.

    Article  CAS  PubMed  Google Scholar 

  346. Wang Z, Dong C. Gluconeogenesis in cancer: function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer. 2019;5(1):30-45. https://doi.org/10.1016/j.trecan.2018.11.003.

    Article  CAS  PubMed  Google Scholar 

  347. Ronchi JA, Figueira TR, Ravagnani FG, Oliveira HC, Vercesi AE, Castilho RF. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6 J mice results in mitochondrial redox abnormalities. Free Radic Biol Med. 2013;63:446-56. https://doi.org/10.1016/j.freeradbiomed.2013.05.049.

    Article  CAS  PubMed  Google Scholar 

  348. Meimaridou E, Goldsworthy M, Chortis V, Fragouli E, Foster PA, Arlt W, et al. NNT is a key regulator of adrenal redox homeostasis and steroidogenesis in male mice. J Endocrinol. 2018;236(1):13-28. https://doi.org/10.1530/JOE-16-0638.

    Article  CAS  PubMed  Google Scholar 

  349. Francisco A, Ronchi JA, Navarro CDC, Figueira TR, Castilho RF. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet. J Neurochem. 2018;147(5):663-77. https://doi.org/10.1111/jnc.14602.

    Article  CAS  PubMed  Google Scholar 

  350. Shashidharan P, Plaitakis A. The discovery of human of GLUD2 glutamate dehydrogenase and its implications for cell function in health and disease. Neurochem Res. 2014;39(3):460-70. https://doi.org/10.1007/s11064-013-1227-5.

    Article  CAS  PubMed  Google Scholar 

  351. McFarlane MR, Liang G, Engelking LJ. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine. J Biol Chem. 2014;289(4):2148-56. https://doi.org/10.1074/jbc.M113.524041.

    Article  CAS  PubMed  Google Scholar 

  352. Prakash P, Punekar NS, Bhaumik P. Structural basis for the catalytic mechanism and alpha-ketoglutarate cooperativity of glutamate dehydrogenase. J Biol Chem. 2018;293(17):6241-58. https://doi.org/10.1074/jbc.RA117.000149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Ronchi JA, Francisco A, Passos LA, Figueira TR, Castilho RF. The contribution of nicotinamide nucleotide transhydrogenase to peroxide detoxification is dependent on the respiratory state and counterbalanced by other sources of NADPH in liver mitochondria. J Biol Chem. 2016;291(38):20173-87. https://doi.org/10.1074/jbc.M116.730473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108(49):19611-6. https://doi.org/10.1073/pnas.1117773108.

    Article  PubMed  PubMed Central  Google Scholar 

  355. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409-12. https://doi.org/10.1074/jbc.R200006200.

    Article  CAS  PubMed  Google Scholar 

  356. Scott E, Peter F, Sanders J. Biomass in the manufacture of industrial products--the use of proteins and amino acids. Appl Microbiol Biotechnol. 2007;75(4):751-62. https://doi.org/10.1007/s00253-007-0932-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, et al. Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Dev Cell. 2016;36(5):540-9. https://doi.org/10.1016/j.devcel.2016.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Leithner K, Triebl A, Trotzmuller M, Hinteregger B, Leko P, Wieser BI, et al. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells. Proc Natl Acad Sci U S A. 2018;115(24):6225-30. https://doi.org/10.1073/pnas.1719871115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Barbosa MC, Grosso RA, Fader CM. Hallmarks of aging: an autophagic perspective. Front Endocrinol (Lausanne). 2018;9:790. https://doi.org/10.3389/fendo.2018.00790.

    Article  Google Scholar 

  360. Nofal M, Zhang K, Han S, Rabinowitz JD. mTOR inhibition restores amino acid balance in cells dependent on catabolism of extracellular protein. Mol Cell. 2017;67(6):936-46 e5. https://doi.org/10.1016/j.molcel.2017.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Wyant GA, Abu-Remaileh M, Frenkel EM, Laqtom NN, Dharamdasani V, Lewis CA, et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science. 2018;360(6390):751-8. https://doi.org/10.1126/science.aar2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Kim KH, Lee MS. Autophagy - a key player in cellular and body metabolism. Nat Rev. Endocrinol. 2014;10(6):322-37. https://doi.org/10.1038/nrendo.2014.35.

    Article  CAS  PubMed  Google Scholar 

  363. Viry E, Paggetti J, Baginska J, Mgrditchian T, Berchem G, Moussay E, et al. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity. Biochem Pharmacol. 2014;92(1):31-42. https://doi.org/10.1016/j.bcp.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  364. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1-2):11-42. https://doi.org/10.1016/j.cell.2018.09.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050-60. https://doi.org/10.1242/dev.137075.

    Article  CAS  PubMed  Google Scholar 

  366. Roof AK, Gutierrez-Hartmann A. Consider the context: Ras/ERK and PI3K/AKT/mTOR signaling outcomes are pituitary cell type-specific. Mol Cell Endocrinol. 2018;463:87-96. https://doi.org/10.1016/j.mce.2017.04.019.

    Article  CAS  PubMed  Google Scholar 

  367. Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep. 2019;19(2):783-91. https://doi.org/10.3892/mmr.2018.9713.

    Article  CAS  PubMed  Google Scholar 

  368. Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, et al. The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis. 2015;36(Suppl 1):S160-83. https://doi.org/10.1093/carcin/bgv035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761-73. https://doi.org/10.7150/jca.17648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev. Pathol. 2009;4:127-50. https://doi.org/10.1146/annurev.pathol.4.110807.092311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Baselga J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist. 2011;16(Suppl 1):12-9. https://doi.org/10.1634/theoncologist.2011-S1-12.

    Article  PubMed  Google Scholar 

  372. Vadlakonda L, Dash A, Pasupuleti M, Anil Kumar K, Reddanna P. The paradox of Akt-mTOR interactions. Front Oncol. 2013;3:165. https://doi.org/10.3389/fonc.2013.00165.

    Article  PubMed  PubMed Central  Google Scholar 

  373. Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F, et al. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. JAMA Oncol. 2017;3(4):509-15. https://doi.org/10.1001/jamaoncol.2016.5281.

    Article  Google Scholar 

  374. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46(6):733-49. https://doi.org/10.1007/s00125-003-1111-y.

    Article  PubMed  Google Scholar 

  375. Kazi AA, Molitoris KH, Koos RD. Estrogen rapidly activates the PI3K/AKT pathway and hypoxia-inducible factor 1 and induces vascular endothelial growth factor A expression in luminal epithelial cells of the rat uterus. Biol Reprod. 2009;81(2):378-87. https://doi.org/10.1095/biolreprod.109.076117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Rios C, D’Ippolito G, Curtis KM, Delcroix GJ, Gomez LA, El Hokayem J, et al. Low oxygen modulates multiple signaling pathways, increasing self-renewal, while decreasing differentiation, senescence, and apoptosis in stromal MIAMI cells. Stem Cells Dev. 2016;25(11):848-60. https://doi.org/10.1089/scd.2015.0362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF1 signaling pathway in hypoxiaischemia (Review). Mol Med Rep. 2018;18(4):3547-54. https://doi.org/10.3892/mmr.2018.9375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol. 2004;167(3):399-403. https://doi.org/10.1083/jcb.200408161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Harrington LS, Findlay GM, Lamb RF. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci. 2005;30(1):35-42. https://doi.org/10.1016/j.tibs.2004.11.003.

    Article  CAS  PubMed  Google Scholar 

  380. Sathe A, Chalaud G, Oppolzer I, Wong KY, von Busch M, Schmid SC, et al. Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy. PLoS One. 2018;13(1):e0190854. https://doi.org/10.1371/journal.pone.0190854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Cramer W, Pringle H, Sharpey-Schafer EA. Contributions to the biochemistry of growth.—The total nitrogen metabolism of rats bearing malignant new growths. Proc Royal Soc B. 1910;82(556):307-15. https://doi.org/10.1098/rspb.1910.0021.

    Article  Google Scholar 

  382. Cramer W, Lochhead J, Schäfer EA. Contributions to the biochemistry of growth.—The glycogen-content of the liver of rats bearing malignant new growths. Proc Royal Soc B. 1913;86(588):302-7. https://doi.org/10.1098/rspb.1913.0025.

    Article  CAS  Google Scholar 

  383. Mider GB. Neoplastic diseases; some metabolic aspects. Annu Rev. Med. 1953;4:187-98. https://doi.org/10.1146/annurev.me.04.020153.001155.

    Article  CAS  PubMed  Google Scholar 

  384. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273(23):14484-94. https://doi.org/10.1074/jbc.273.23.14484.

    Article  CAS  PubMed  Google Scholar 

  385. Wang X, Campbell LE, Miller CM, Proud CG. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J. 1998;334(Pt 1):261-7. https://doi.org/10.1042/bj3340261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Christie GR, Hajduch E, Hundal HS, Proud CG, Taylor PM. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner. J Biol Chem. 2002;277(12):9952-7. https://doi.org/10.1074/jbc.M107694200.

    Article  CAS  PubMed  Google Scholar 

  387. Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab. 2009;20(9):436-43. https://doi.org/10.1016/j.tem.2009.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 2010;29(12):2082-96. https://doi.org/10.1038/emboj.2010.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2014;38(2):254-99. https://doi.org/10.1111/1574-6976.12065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Steyfkens F, Zhang Z, Van Zeebroeck G, Thevelein JM. Multiple transceptors for macro- and micro-nutrients control diverse cellular properties through the PKA pathway in yeast: a paradigm for the rapidly expanding world of eukaryotic nutrient transceptors up to those in human cells. Front Pharmacol. 2018;9:191. https://doi.org/10.3389/fphar.2018.00191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Wang Y, Ning Y, Alam GN, Jankowski BM, Dong Z, Nor JE, et al. Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway. Neoplasia. 2013;15(8):989-97. https://doi.org/10.1593/neo.13262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Vynnytska-Myronovska BO, Kurlishchuk Y, Chen O, Bobak Y, Dittfeld C, Huther M, et al. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution. Exp Cell Res. 2016;341(1):67-74. https://doi.org/10.1016/j.yexcr.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  393. Nakamura A, Nambu T, Ebara S, Hasegawa Y, Toyoshima K, Tsuchiya Y, et al. Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proc Natl Acad Sci U S A. 2018;115(33):E7776-E85. https://doi.org/10.1073/pnas.1805523115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150(6):1196-208. https://doi.org/10.1016/j.cell.2012.07.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24(7):400-6. https://doi.org/10.1016/j.tcb.2014.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Perumal S, Antipova O, Orgel JP. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci U S A. 2008;105(8):2824-9. https://doi.org/10.1073/pnas.0710588105.

    Article  PubMed  PubMed Central  Google Scholar 

  397. Gauza-Wlodarczyk M, Kubisz L, Wlodarczyk D. Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int J Biol Macromol. 2017;104(Pt A):987-91. https://doi.org/10.1016/j.ijbiomac.2017.07.013.

    Article  CAS  PubMed  Google Scholar 

  398. Goberdhan DC, Wilson C, Harris AL. Amino acid sensing by mTORC1: intracellular transporters mark the spot. Cell Metab. 2016;23(4):580-9. https://doi.org/10.1016/j.cmet.2016.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Fan SJ, Goberdhan DCI. PATs and SNATs: amino acid sensors in disguise. Front Pharmacol. 2018;9:640. https://doi.org/10.3389/fphar.2018.00640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Hellsten SV, Eriksson MM, Lekholm E, Arapi V, Perland E, Fredriksson R. The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet. PLoS One. 2017;12(2):e0172917. https://doi.org/10.1371/journal.pone.0172917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477-81. https://doi.org/10.1038/nature14107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. You L, Wang Z, Li H, Shou J, Jing Z, Xie J, et al. The role of STAT3 in autophagy. Autophagy. 2015;11(5):729-39. https://doi.org/10.1080/15548627.2015.1017192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Jung J, Genau HM, Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol. 2015;35(14):2479-94. https://doi.org/10.1128/MCB.00125-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV, et al. mTORC1 Activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell. 2017;171(3):642-54 e12. https://doi.org/10.1016/j.cell.2017.09.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1-17. https://doi.org/10.1042/bj3360001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Morris SM Jr. Arginine metabolism revisited. J Nutr. 2016;146(12):2579S-86S. https://doi.org/10.3945/jn.115.226621.

    Article  CAS  PubMed  Google Scholar 

  407. Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech. 2018;11(8) https://doi.org/10.1242/dmm.033332.

  408. Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta. 2016;1863(10):2531-9. https://doi.org/10.1016/j.bbamcr.2015.12.017.

    Article  CAS  PubMed  Google Scholar 

  409. Xie J, Li P, Gao HF, Qian JX, Yuan LY, Wang JJ. Overexpression of SLC38A1 is associated with poorer prognosis in Chinese patients with gastric cancer. BMC Gastroenterol. 2014;14:70. https://doi.org/10.1186/1471-230X-14-70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino Acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res. 2015;75(9):1782-8. https://doi.org/10.1158/0008-5472.CAN-14-3745.

    Article  CAS  PubMed  Google Scholar 

  411. Broer A, Rahimi F, Broer S. Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem. 2016;291(25):13194-205. https://doi.org/10.1074/jbc.M115.700534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Di Paola M, Park AJ, Ahmadi S, Roach EJ, Wu YS, Struder-Kypke M, et al. SLC6A14 is a genetic modifier of cystic fibrosis that regulates Pseudomonas aeruginosa attachment to human bronchial epithelial cells. mBio. 2017;8(6) https://doi.org/10.1128/mBio.02073-17.

  413. Ruffin M, Mercier J, Calmel C, Mesinele J, Bigot J, Sutanto EN, et al. Update on SLC6A14 in lung and gastrointestinal physiology and physiopathology: focus on cystic fibrosis. Cell Mol Life Sci. 2020; https://doi.org/10.1007/s00018-020-03487-x.

  414. Palacin M, Estevez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998;78(4):969-1054. https://doi.org/10.1152/physrev.1998.78.4.969.

    Article  CAS  PubMed  Google Scholar 

  415. Yamamoto A, Akanuma S, Tachikawa M, Hosoya K. Involvement of LAT1 and LAT2 in the high- and low-affinity transport of L-leucine in human retinal pigment epithelial cells (ARPE-19 cells). J Pharm Sci. 2010;99(5):2475-82. https://doi.org/10.1002/jps.21991.

    Article  CAS  PubMed  Google Scholar 

  416. Napolitano L, Scalise M, Galluccio M, Pochini L, Albanese LM, Indiveri C. LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int J Biochem Cell Biol. 2015;67:25-33. https://doi.org/10.1016/j.biocel.2015.08.004.

    Article  CAS  PubMed  Google Scholar 

  417. Singh N, Ecker GF. Insights into the structure, function, and ligand discovery of the large neutral amino acid transporter 1, LAT1. Int J Mol Sci. 2018;19(5) https://doi.org/10.3390/ijms19051278.

  418. Yan R, Zhao X, Lei J, Zhou Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature. 2019;568(7750):127-30. https://doi.org/10.1038/s41586-019-1011-z.

    Article  CAS  PubMed  Google Scholar 

  419. Dickens D, Chiduza GN, Wright GS, Pirmohamed M, Antonyuk SV, Hasnain SS. Modulation of LAT1 (SLC7A5) transporter activity and stability by membrane cholesterol. Sci Rep. 2017;7:43580. https://doi.org/10.1038/srep43580.

    Article  PubMed  PubMed Central  Google Scholar 

  420. Feng M, Xiong G, Cao Z, Yang G, Zheng S, Qiu J, et al. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer. J Exp Clin Cancer Res. 2018;37(1):274. https://doi.org/10.1186/s13046-018-0947-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Kinne A, Wittner M, Wirth EK, Hinz KM, Schulein R, Kohrle J, et al. Involvement of the L-type amino acid transporter Lat2 in the transport of 3,3′-Diiodothyronine across the plasma membrane. Eur Thyroid J. 2015;4(Suppl 1):42-50. https://doi.org/10.1159/000381542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Kurayama R, Ito N, Nishibori Y, Fukuhara D, Akimoto Y, Higashihara E, et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab Invest. 2011;91(7):992-1006. https://doi.org/10.1038/labinvest.2011.43.

    Article  CAS  PubMed  Google Scholar 

  423. Knopfel EB, Vilches C, Camargo SMR, Errasti-Murugarren E, Staubli A, Mayayo C, et al. Dysfunctional LAT2 amino acid transporter is associated with cataract in mouse and humans. Front Physiol. 2019;10:688. https://doi.org/10.3389/fphys.2019.00688.

    Article  PubMed  PubMed Central  Google Scholar 

  424. Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, et al. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 2010;24(24):2784-99. https://doi.org/10.1101/gad.1985910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Moloughney JG, Kim PK, Vega-Cotto NM, Wu CC, Zhang S, Adlam M, et al. mTORC2 responds to glutamine catabolite levels to modulate the hexosamine biosynthesis enzyme GFAT1. Mol Cell. 2016;63(5):811-26. https://doi.org/10.1016/j.molcel.2016.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Jacobs HG. Surgery in the dental practice. 4. Oroantral communication after tooth extraction. Niedersachs Zahnarztebl. 1977;12(7):326-9.

    CAS  PubMed  Google Scholar 

  427. Scaglia N, Tyekucheva S, Zadra G, Photopoulos C, Loda M. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle. 2014;13(5):859-68. https://doi.org/10.4161/cc.27767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521-34. https://doi.org/10.1016/j.cell.2008.11.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Oppedisano F, Pochini L, Galluccio M, Indiveri C. The glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: transport mechanism, regulation by ATP and characterization of the glutamine/glutamate antiport. Biochim Biophys Acta. 2007;1768(2):291-8. https://doi.org/10.1016/j.bbamem.2006.09.002.

    Article  CAS  PubMed  Google Scholar 

  430. Fournier M, Monin A, Ferrari C, Baumann PS, Conus P, Do K. Implication of the glutamate-cystine antiporter xCT in schizophrenia cases linked to impaired GSH synthesis. NPJ Schizophr. 2017;3(1):31. https://doi.org/10.1038/s41537-017-0035-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Dai L, Noverr MC, Parsons C, Kaleeba JA, Qin Z. xCT, not just an amino-acid transporter: a multi-functional regulator of microbial infection and associated diseases. Front Microbiol. 2015;6:120. https://doi.org/10.3389/fmicb.2015.00120.

    Article  PubMed  PubMed Central  Google Scholar 

  432. Posner ER, Gies WJ. Is protagon a mechanical mixture of substances or a definite chemical compound? J Biol Chem. 1905;1(1):59-112.

    Google Scholar 

  433. Pringle H, Cramer W. On the assimilation of protein introduced enterally. J Physiol. 1908;37(2):158-64. https://doi.org/10.1113/jphysiol.1908.sp001264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Rosenheim O, Tebb MC. The non-existence of;protagon’ as a definite chemical compound. J Physiol. 1907;36(1):1-16. https://doi.org/10.1113/jphysiol.1907.sp001211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178(1):93-105. https://doi.org/10.1083/jcb.200703099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Bridges RJ, Natale NR, Patel SA. System xc(−) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012;165(1):20-34. https://doi.org/10.1111/j.1476-5381.2011.01480.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system x(c)(−) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(5):522-55. https://doi.org/10.1089/ars.2011.4391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Grimm H, Kraus A. Immunonutrition--supplementary amino acids and fatty acids ameliorate immune deficiency in critically ill patients. Langenbecks Arch Surg. 2001;386(5):369-76. https://doi.org/10.1007/s004230100241.

    Article  CAS  PubMed  Google Scholar 

  439. Biolo G. Protein metabolism and requirements. World Rev. Nutr Diet. 2013;105:12-20. https://doi.org/10.1159/000341545.

    Article  PubMed  Google Scholar 

  440. Nissim I, Daikhin Y, Nissim I, Luhovyy B, Horyn O, Wehrli SL, et al. Agmatine stimulates hepatic fatty acid oxidation: a possible mechanism for up-regulation of ureagenesis. J Biol Chem. 2006;281(13):8486-96. https://doi.org/10.1074/jbc.M506984200.

    Article  CAS  PubMed  Google Scholar 

  441. Wisniewska A, Olszanecki R, Toton-Zuranska J, Kus K, Stachowicz A, Suski M, et al. Anti-atherosclerotic action of agmatine in ApoE-knockout mice. Int J Mol Sci. 2017;18(8) https://doi.org/10.3390/ijms18081706.

  442. Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, et al. The molecular and metabolic influence of long term agmatine consumption. J Biol Chem. 2014;289(14):9710-29. https://doi.org/10.1074/jbc.M113.544726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997;418(3):291-6. https://doi.org/10.1016/s0014-5793(97)01397-5.

    Article  CAS  PubMed  Google Scholar 

  444. Ghafourifar P, Richter C. Mitochondrial nitric oxide synthase regulates mitochondrial matrix pH. Biol Chem. 1999;380(7-8):1025-8. https://doi.org/10.1515/BC.1999.127.

    Article  CAS  PubMed  Google Scholar 

  445. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005;26(4):190-5. https://doi.org/10.1016/j.tips.2005.02.005.

    Article  CAS  PubMed  Google Scholar 

  446. Lacza Z, Pankotai E, Busija DW. Mitochondrial nitric oxide synthase: current concepts and controversies. Front Biosci (Landmark Ed). 2009;14:4436-43.

    CAS  Google Scholar 

  447. Xu C, Yi C, Wang H, Bruce IC, Xia Q. Mitochondrial nitric oxide synthase participates in septic shock myocardial depression by nitric oxide overproduction and mitochondrial permeability transition pore opening. Shock. 2012;37(1):110-5. https://doi.org/10.1097/SHK.0b013e3182391831.

    Article  CAS  PubMed  Google Scholar 

  448. Tengan CH, Moraes CT. NO control of mitochondrial function in normal and transformed cells. Biochim Biophys Acta Bioenerg. 2017;1858(8):573-81. https://doi.org/10.1016/j.bbabio.2017.02.009.

    Article  CAS  PubMed  Google Scholar 

  449. Brown GC, Borutaite V. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med. 2002;33(11):1440-50. https://doi.org/10.1016/s0891-5849(02)01112-7.

    Article  CAS  PubMed  Google Scholar 

  450. Brown GC, Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta. 2004;1658(1-2):44-9. https://doi.org/10.1016/j.bbabio.2004.03.016.

    Article  CAS  PubMed  Google Scholar 

  451. Perales-Clemente E, Bayona-Bafaluy MP, Perez-Martos A, Barrientos A, Fernandez-Silva P, Enriquez JA. Restoration of electron transport without proton pumping in mammalian mitochondria. Proc Natl Acad Sci U S A. 2008;105(48):18735-9. https://doi.org/10.1073/pnas.0810518105.

    Article  PubMed  PubMed Central  Google Scholar 

  452. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431-5. https://doi.org/10.1038/nature13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  453. Morris SM Jr, Gao T, Cooper TK, Kepka-Lenhart D, Awad AS. Arginase-2 mediates diabetic renal injury. Diabetes. 2011;60(11):3015-22. https://doi.org/10.2337/db11-0901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Topal G, Brunet A, Walch L, Boucher JL, David-Dufilho M. Mitochondrial arginase II modulates nitric-oxide synthesis through nonfreely exchangeable L-arginine pools in human endothelial cells. J Pharmacol Exp Ther. 2006;318(3):1368-74. https://doi.org/10.1124/jpet.106.103747.

    Article  CAS  PubMed  Google Scholar 

  455. Yelamanchi SD, Jayaram S, Thomas JK, Gundimeda S, Khan AA, Singhal A, et al. A pathway map of glutamate metabolism. J Cell Commun Signal. 2016;10(1):69-75. https://doi.org/10.1007/s12079-015-0315-5.

    Article  PubMed  Google Scholar 

  456. Lam SK, Yan S, Xu S, U KP, Cheng PN, Ho JC. Endogenous arginase 2 as a potential biomarker for PEGylated arginase 1 treatment in xenograft models of squamous cell lung carcinoma. Oncogenesis. 2019;8(3):18. https://doi.org/10.1038/s41389-019-0128-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Haines RJ, Pendleton LC, Eichler DC. Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol. 2011;2(1):8-23.

    CAS  PubMed  Google Scholar 

  458. Fultang L, Vardon A, De Santo C, Mussai F. Molecular basis and current strategies of therapeutic arginine depletion for cancer. Int J Cancer. 2016;139(3):501-9. https://doi.org/10.1002/ijc.30051.

    Article  CAS  PubMed  Google Scholar 

  459. Kovacevic Z, Day SH, Collett V, Brosnan JT, Brosnan ME. Activation of hepatic glutaminase by spermine. Biochem J. 1995;305(Pt 3):837-41. https://doi.org/10.1042/bj3050837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Xiong Y, Yepuri G, Montani JP, Ming XF, Yang Z. Arginase-II deficiency extends lifespan in mice. Front Physiol. 2017;8:682. https://doi.org/10.3389/fphys.2017.00682.

    Article  PubMed  PubMed Central  Google Scholar 

  461. Aoyagi K. Inhibition of arginine synthesis by urea: a mechanism for arginine deficiency in renal failure which leads to increased hydroxyl radical generation. Mol Cell Biochem. 2003;244(1-2):11-5.

    CAS  PubMed  Google Scholar 

  462. Setty BA, Pillay Smiley N, Pool CM, Jin Y, Liu Y, Nelin LD. Hypoxia-induced proliferation of HeLa cells depends on epidermal growth factor receptor-mediated arginase II induction. Physiol Rep. 2017;5(6) https://doi.org/10.14814/phy2.13175.

  463. Chen D, Gu K, Wang H. Optimizing sequential treatment with anti-EGFR and VEGF mAb in metastatic colorectal cancer: current results and controversies. Cancer Manag Res. 2019;11:1705-16. https://doi.org/10.2147/CMAR.S196170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Calvani M, Rapisarda A, Uranchimeg B, Shoemaker RH, Melillo G. Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood. 2006;107(7):2705-12. https://doi.org/10.1182/blood-2005-09-3541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  465. Lee JE, Shin SH, Shin HW, Chun YS, Park JW. Nuclear FGFR2 negatively regulates hypoxia-induced cell invasion in prostate cancer by interacting with HIF-1 and HIF-2. Sci Rep. 2019;9(1):3480. https://doi.org/10.1038/s41598-019-39,843-6.

    Article  PubMed  PubMed Central  Google Scholar 

  466. Woolf DK, Li SP, Detre S, Liu A, Gogbashian A, Simcock IC, et al. Assessment of the spatial heterogeneity of breast cancers: associations between Computed Tomography and Immunohistochemistry. Biomark Cancer. 2019;11:1179299X19851513. https://doi.org/10.1177/1179299X19851513.

    Article  PubMed  PubMed Central  Google Scholar 

  467. Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001;1504(1):46-57. https://doi.org/10.1016/s0005-2728(00)00238-3.

    Article  CAS  PubMed  Google Scholar 

  468. Saikumar P, Dong Z, Weinberg JM, Venkatachalam MA. Mechanisms of cell death in hypoxia/reoxygenation injury. Oncogene. 1998;17(25):3341-9. https://doi.org/10.1038/sj.onc.1202579.

    Article  PubMed  Google Scholar 

  469. Walford GA, Moussignac RL, Scribner AW, Loscalzo J, Leopold JA. Hypoxia potentiates nitric oxide-mediated apoptosis in endothelial cells via peroxynitrite-induced activation of mitochondria-dependent and -independent pathways. J Biol Chem. 2004;279(6):4425-32. https://doi.org/10.1074/jbc.M310582200.

    Article  CAS  PubMed  Google Scholar 

  470. Arab A, Wang J, Bausch K, von Schmadel K, Bode C, Hehrlein C. Transient hyperoxic reoxygenation reduces cytochrome C oxidase activity by increasing superoxide dismutase and nitric oxide. J Biol Chem. 2010;285(15):11172-7. https://doi.org/10.1074/jbc.M109.053181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Poderoso JJ, Helfenberger K, Poderoso C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide. 2019;88:61-72. https://doi.org/10.1016/j.niox.2019.04.005.

    Article  CAS  PubMed  Google Scholar 

  472. Schweighofer H, Rummel C, Mayer K, Rosengarten B. Brain function in iNOS knock out or iNOS inhibited (l-NIL) mice under endotoxic shock. Intensive Care Med Exp. 2014;2(1):24. https://doi.org/10.1186/s40635-014-0024-z.

    Article  PubMed  PubMed Central  Google Scholar 

  473. Singh S, Zhuo M, Gorgun FM, Englander EW. Overexpressed neuroglobin raises threshold for nitric oxide-induced impairment of mitochondrial respiratory activities and stress signaling in primary cortical neurons. Nitric Oxide. 2013;32:21-8. https://doi.org/10.1016/j.niox.2013.03.008.

    Article  CAS  PubMed  Google Scholar 

  474. Loayza-Puch F, Rooijers K, Buil LC, Zijlstra J, Oude Vrielink JF, Lopes R, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature. 2016;530(7591):490-4. https://doi.org/10.1038/nature16982.

    Article  CAS  PubMed  Google Scholar 

  475. Casalino L, Comes S, Lambazzi G, De Stefano B, Filosa S, De Falco S, et al. Control of embryonic stem cell metastability by L-proline catabolism. J Mol Cell Biol. 2011;3(2):108-22. https://doi.org/10.1093/jmcb/mjr001.

    Article  CAS  PubMed  Google Scholar 

  476. von Stechow L, Ruiz-Aracama A, van de Water B, Peijnenburg A, Danen E, Lommen A. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells. PLoS One. 2013;8(10):e76476. https://doi.org/10.1371/journal.pone.0076476.

    Article  CAS  Google Scholar 

  477. Phang JM, Liu W, Hancock CN, Fischer JW. Proline metabolism and cancer: emerging links to glutamine and collagen. Curr Opin Clin Nutr Metab Care. 2015;18(1):71-7. https://doi.org/10.1097/MCO.0000000000000121.

    Article  CAS  PubMed  Google Scholar 

  478. Liu W, Hancock CN, Fischer JW, Harman M, Phang JM. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides. Sci Rep. 2015;5:17206. https://doi.org/10.1038/srep17206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  479. Phang JM. Proline metabolism in cell regulation and cancer biology: recent advances and hypotheses. Antioxid Redox Signal. 2019;30(4):635-49. https://doi.org/10.1089/ars.2017.7350.

    Article  CAS  PubMed  Google Scholar 

  480. Alkan HF, Walter KE, Luengo A, Madreiter-Sokolowski CT, Stryeck S, Lau AN, et al. Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metab. 2018;28(5):706-20 e6. https://doi.org/10.1016/j.cmet.2018.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Kim D, Choi BH, Ryoo IG, Kwak MK. High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death Dis. 2018;9(9):896. https://doi.org/10.1038/s41419-018-0903-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  482. Liesche F, Griessmair M, Barz M, Gempt J, Schlegel J. ALDH1 - A new immunohistochemical diagnostic marker for Schwann cell-derived tumors. Clin Neuropathol. 2019;38(4):168-73. https://doi.org/10.5414/NP301190.

    Article  PubMed  Google Scholar 

  483. Feng J, Zhou Z, Shi L, Yang X, Liu W. Cancer stem cell markers ALDH1 and Bmi1 expression in oral erythroplakia revisited: Implication for driving the process of field cancerization. J Oral Pathol Med. 2020;49(1):96-9. https://doi.org/10.1111/jop.12955.

    Article  CAS  PubMed  Google Scholar 

  484. Verdon Q, Boonen M, Ribes C, Jadot M, Gasnier B, Sagne C. SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells. Proc Natl Acad Sci U S A. 2017;114(18):E3602-E11. https://doi.org/10.1073/pnas.1617066114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  485. Chen L, Cui H. Targeting glutamine induces apoptosis: a cancer therapy approach. Int J Mol Sci. 2015;16(9):22830-55. https://doi.org/10.3390/ijms160922830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  486. Choi YK, Park KG. Targeting glutamine metabolism for cancer treatment. Biomol Ther (Seoul). 2018;26(1):19-28. https://doi.org/10.4062/biomolther.2017.178.

    Article  CAS  PubMed  Google Scholar 

  487. Valter K, Chen L, Kruspig B, Maximchik P, Cui H, Zhivotovsky B, et al. Contrasting effects of glutamine deprivation on apoptosis induced by conventionally used anticancer drugs. Biochim Biophys Acta Mol Cell Res. 2017;1864(3):498-506. https://doi.org/10.1016/j.bbamcr.2016.12.016.

    Article  CAS  PubMed  Google Scholar 

  488. Sullivan LB, Luengo A, Danai LV, Bush LN, Diehl FF, Hosios AM, et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat Cell Biol. 2018;20(7):782-8. https://doi.org/10.1038/s41556-018-0125-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Garcia-Bermudez J, Baudrier L, La K, Zhu XG, Fidelin J, Sviderskiy VO, et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol. 2018;20(7):775-81. https://doi.org/10.1038/s41556-018-0118-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  490. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347-54. https://doi.org/10.1016/j.tibs.2014.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Liu L, Shah S, Fan J, Park JO, Wellen KE, Rabinowitz JD. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage. Nat Chem Biol. 2016;12(5):345-52. https://doi.org/10.1038/nchembio.2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  492. Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem. 2007;282(4):2483-93. https://doi.org/10.1074/jbc.M610158200.

    Article  CAS  PubMed  Google Scholar 

  493. Flowers MT, Ntambi JM. Stearoyl-CoA desaturase and its relation to high-carbohydrate diets and obesity. Biochim Biophys Acta. 2009;1791(2):85-91. https://doi.org/10.1016/j.bbalip.2008.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  494. Duarte JA, Carvalho F, Pearson M, Horton JD, Browning JD, Jones JG, et al. A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J Lipid Res. 2014;55(12):2541-53. https://doi.org/10.1194/jlr.M052308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  495. Wong A, Chen S, Yang LK, Kanagasundaram Y, Crasta K. Lipid accumulation facilitates mitotic slippage-induced adaptation to anti-mitotic drug treatment. Cell Death Discov. 2018;4:109. https://doi.org/10.1038/s41420-018-0127-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  496. Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Bruning U, et al. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J. 2017;36(16):2334-52. https://doi.org/10.15252/embj.201695518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Pavlova NN, Hui S, Ghergurovich JM, Fan J, Intlekofer AM, White RM, et al. As extracellular glutamine levels decline, asparagine becomes an essential Amino acid. Cell Metab. 2018;27(2):428-38 e5. https://doi.org/10.1016/j.cmet.2017.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Krall AS, Xu S, Graeber TG, Braas D, Christofk HR. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457. https://doi.org/10.1038/ncomms11457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  499. Bott AJ, Maimouni S, Zong WX. The pleiotropic effects of glutamine metabolism in cancer. Cancers (Basel). 2019;11(6) https://doi.org/10.3390/cancers11060770.

  500. Jiang J, Srivastava S, Zhang J. Starve Cancer cells of glutamine: break the spell or make a hungry monster? Cancers (Basel). 2019;11(6) https://doi.org/10.3390/cancers11060804.

  501. Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006;136(1 Suppl):207S-11S. https://doi.org/10.1093/jn/136.1.207S.

    Article  CAS  PubMed  Google Scholar 

  502. Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 2015;3(1):1. https://doi.org/10.1186/s40170-015-0128-2.

    Article  PubMed  PubMed Central  Google Scholar 

  503. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745-54. https://doi.org/10.1038/s41556-018-0124-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. Cardaci S, Zheng L, MacKay G, van den Broek NJ, MacKenzie ED, Nixon C, et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol. 2015;17(10):1317-26. https://doi.org/10.1038/ncb3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  505. Scalise M, Galluccio M, Console L, Pochini L, Indiveri C. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem. 2018;6:243. https://doi.org/10.3389/fchem.2018.00243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  506. Kakazu E, Kanno N, Ueno Y, Shimosegawa T. Extracellular branched-chain amino acids, especially valine, regulate maturation and function of monocyte-derived dendritic cells. J Immunol. 2007;179(10):7137-46. https://doi.org/10.4049/jimmunol.179.10.7137.

    Article  CAS  PubMed  Google Scholar 

  507. Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta. 2016;1857(8):1086-101. https://doi.org/10.1016/j.bbabio.2016.03.012.

    Article  CAS  PubMed  Google Scholar 

  508. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9(2):216-37. https://doi.org/10.1007/s13238-017-0451-1.

    Article  CAS  PubMed  Google Scholar 

  509. Williams KM, Gress RE. Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol. 2008;21(3):579-96. https://doi.org/10.1016/j.beha.2008.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  510. Taya Y, Ota Y, Wilkinson AC, Kanazawa A, Watarai H, Kasai M, et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science. 2016;354(6316):1152-5. https://doi.org/10.1126/science.aag3145.

    Article  CAS  PubMed  Google Scholar 

  511. Rowe RG, Daley GQ. Stem cells: valine starvation leads to a hungry niche. Nature. 2017;541(7636):166-7. https://doi.org/10.1038/nature21106.

    Article  CAS  PubMed  Google Scholar 

  512. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res. 2006;47(6):1118-27. https://doi.org/10.1194/jlr.R600007-JLR200.

    Article  CAS  PubMed  Google Scholar 

  513. Tabaczar S, Czogalla A, Podkalicka J, Biernatowska A, Sikorski AF. Protein palmitoylation: palmitoyltransferases and their specificity. Exp Biol Med (Maywood). 2017;242(11):1150-1157. dhttps://doi.org/10.1177/1535370217707732.

  514. Manandhar SP, Calle EN, Gharakhanian E. Distinct palmitoylation events at the amino-terminal conserved cysteines of Env7 direct its stability, localization, and vacuolar fusion regulation in S. cerevisiae. J Biol Chem. 2014;289(16):11431-42. https://doi.org/10.1074/jbc.M113.524082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  515. Jennings BC, Linder ME. DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J Biol Chem. 2012;287(10):7236-45. https://doi.org/10.1074/jbc.M111.337246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  516. Donatello S, Babina IS, Hazelwood LD, Hill AD, Nabi IR, Hopkins AM. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration. Am J Pathol. 2012;181(6):2172-87. https://doi.org/10.1016/j.ajpath.2012.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  517. Yang N, Ying C, Xu M, Zuo X, Ye X, Liu L, et al. High-fat diet up-regulates caveolin-1 expression in aorta of diet-induced obese but not in diet-resistant rats. Cardiovasc Res. 2007;76(1):167-74. https://doi.org/10.1016/j.cardiores.2007.05.028.

    Article  CAS  PubMed  Google Scholar 

  518. Garcia-Serrano S, Moreno-Santos I, Garrido-Sanchez L, Gutierrez-Repiso C, Garcia-Almeida JM, Garcia-Arnes J, et al. Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Mol Med. 2011;17(3-4):273-80. https://doi.org/10.2119/molmed.2010.00078.

    Article  CAS  PubMed  Google Scholar 

  519. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785-9. https://doi.org/10.1016/s0140-6736(63)91500-9.

    Article  CAS  PubMed  Google Scholar 

  520. Felig P. The glucose-alanine cycle. Metabolism. 1973;22(2):179-207. https://doi.org/10.1016/0026-0495(73)90269-2.

    Article  CAS  PubMed  Google Scholar 

  521. Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757-85. https://doi.org/10.1016/j.cmet.2018.03.008.

    Article  CAS  PubMed  Google Scholar 

  522. Gladden LB. Lactate as a key metabolic intermediate in cancer. Ann Transl Med. 2019;7(10):210. https://doi.org/10.21037/atm.2019.01.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, AP IJ. International Union of Basic and Clinical Pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B). Pharmacol Rev. 2011;63(2):269-90. https://doi.org/10.1124/pr.110.003301.

    Article  CAS  PubMed  Google Scholar 

  524. Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, et al. The lactate receptor, G protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res. 2015;93(7):1045-55. https://doi.org/10.1002/jnr.23593.

    Article  CAS  PubMed  Google Scholar 

  525. Haase VH. Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol. 2010;299(1):F1-13. https://doi.org/10.1152/ajprenal.00174.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  526. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013;27(1):41-53. https://doi.org/10.1016/j.blre.2012.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  527. van Vuren AJ, Gaillard C, Eisenga MF, van Wijk R, van Beers EJ. The EPO-FGF23 signaling pathway in erythroid progenitor cells: opening a new area of research. Front Physiol. 2019;10:304. https://doi.org/10.3389/fphys.2019.00304.

    Article  PubMed  PubMed Central  Google Scholar 

  528. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782-7. https://doi.org/10.1073/pnas.0810199105.

    Article  PubMed  PubMed Central  Google Scholar 

  529. Perez-Escuredo J, Dadhich RK, Dhup S, Cacace A, Van Hee VF, De Saedeleer CJ, et al. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle. 2016;15(1):72-83. https://doi.org/10.1080/15384101.2015.1120930.

    Article  CAS  PubMed  Google Scholar 

  530. Science Aao. Which came first: the chicken or the egg? 2018. https://www.science.org.au/curious/earth-environment/which-came-first-chicken-or-egg.

  531. Hayflick L. Mortality and immortality at the cellular level. A review. Biochemistry (Mosc). 1997;62(11):1180-90.

    CAS  PubMed  Google Scholar 

  532. Hayflick L. The illusion of cell immortality. Br J Cancer. 2000;83(7):841-6. https://doi.org/10.1054/bjoc.2000.1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  533. Blagosklonny MV. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle. 2006;5(18):2087-102. https://doi.org/10.4161/cc.5.18.3288.

    Article  CAS  PubMed  Google Scholar 

  534. Cooper SJ. From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite. 2008;51(3):419-27. https://doi.org/10.1016/j.appet.2008.06.005.

    Article  PubMed  Google Scholar 

  535. Ratner S. The dynamic state of body proteins. Ann N Y Acad Sci. 1979;325:188-209. https://doi.org/10.1111/j.1749-6632.1979.tb14135.x.

    Article  CAS  PubMed  Google Scholar 

  536. Guggenheim KY. Rudolf Schoenheimer and the concept of the dynamic state of body constituents. J Nutr. 1991;121(11):1701-4. https://doi.org/10.1093/jn/121.11.1701.

    Article  CAS  PubMed  Google Scholar 

  537. Pardee AB. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 1974;71(4):1286-90. https://doi.org/10.1073/pnas.71.4.1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  538. Tilan J, Kitlinska J. Sympathetic neurotransmitters and tumor angiogenesis-link between stress and cancer progression. J Oncol. 2010;2010:539706. https://doi.org/10.1155/2010/539706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  539. Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983;63(2):547-605. https://doi.org/10.1152/physrev.1983.63.2.547.

    Article  CAS  PubMed  Google Scholar 

  540. Bergman D, Halje M, Nordin M, Engstrom W. Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology. 2013;59(3):240-9. https://doi.org/10.1159/000343995.

    Article  CAS  PubMed  Google Scholar 

  541. Casellas A, Mallol C, Salavert A, Jimenez V, Garcia M, Agudo J, et al. Insulin-like growth factor 2 overexpression induces beta-cell dysfunction and increases beta-cell susceptibility to damage. J Biol Chem. 2015;290(27):16772-85. https://doi.org/10.1074/jbc.M115.642041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  542. Szeliga M, Obara-Michlewska M. Glutamine in neoplastic cells: focus on the expression and roles of glutaminases. Neurochem Int. 2009;55(1-3):71-5. https://doi.org/10.1016/j.neuint.2009.01.008.

    Article  CAS  PubMed  Google Scholar 

  543. Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 2020;31(2):267-83 e12. https://doi.org/10.1016/j.cmet.2019.11.020.

    Article  CAS  PubMed  Google Scholar 

  544. Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, Kovacs Z, et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 2014;7(5):1679-90. https://doi.org/10.1016/j.celrep.2014.04.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  545. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A. 2012;109(23):8983-8. https://doi.org/10.1073/pnas.1203244109.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

LV acknowledges umpteen number of authors and former students (both cited and not cited in the article), who shared their research articles on request, which helped in shaping the hypothesis and development of the article to its final shape. MI would like to acknowledge all staff of the Institute of Biotechnology, University of Gondar, Gondar, Ethiopia, for their constant encouragement and support extended. The University of Hyderabad partly supported ABMR laboratory through institutional funding from DST-FIST (DBT-RNAi, DST-SERB), Government of India. GBM acknowledges UGC-CSIR for student fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author (LV) formulated the hypothesis and developed the scheme and the write-up. MI participated in the discussion and development of gene networks by using the geneMANIA and the String databases.SK contributed to literature collection and compilation of literature. GBM, NN, and ABMR participated in the day to day discussions and supported in literature collection, during the write-up, which helped in shaping the article in its’ final form.

Corresponding author

Correspondence to Lakshmipathi Vadlakonda.

Ethics declarations

Conflict of interest

The article is not supported by any funding agency; the authors do not have any conflict of interest.

figure a

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author is a retired professor from Kakatiya University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadlakonda, L., Indracanti, M., Kalangi, S.K. et al. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 19, 1731–1775 (2020). https://doi.org/10.1007/s40200-020-00566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00566-5

Keywords

Navigation