Skip to main content

Advertisement

Log in

The landscape of microbiota research in Iran; a bibliometric and network analysis

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

To introduce bibliometric features of Iranian documents on microbiota and to provide descriptive information about retrieved documents related to the medical sciences and documents utilizing molecular techniques for microbiota detection.

Methods

This is a descriptive bibliometric study of all Iranian documents on microbiota in any language that were indexed in Scopus before 7 September 2019. We assessed the research performance through statistical analysis of the bibliometric indicators, including number of publications, citations, institutions and journals activities, co-citations and bibliographic couplings, and network analysis of co-authorships, countries’ collaborations, terms and keywords.

Results

We extracted 425 relevant documents, 260 of which pertain to the medical sciences. The most focused microbiota modulating interventions and diseases in 33 clinical trials are ‘synbiotics’ (n = 8) and ‘probiotics’ (n = 8), and ‘Obesity’ (n = 3) and ‘non-alcoholic fatty liver disease’ (n = 3), respectively. During the last decade, Iranian microbiota publications have increasingly grown with a constant upward slope, particularly in the area of medical sciences after 2016. Citation counting reveals that originals and reviews have been cited 4221 times, with an average 10.76 citations and H-index of 34. The most significant performance in publishing Iranian microbiota documents belongs to ‘Tehran University of Medical Sciences’ as the active institution (n = 89 publications) and the supporting sponsor (n = 19), ‘Microbial Pathogenesis’ as the productive journal (n = 12), ‘Seidavi A’ as the most authorships (n = 19), and ‘the United States’ as the collaborative country (n = 46).

Conclusions

The qualitative and quantitative information of this study will be a practical guidance for future study planning and policy-decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sokolov-Mladenović S, Cvetanović S, Mladenović I. R&D expenditure and economic growth: EU28 evidence for the period 2002–2012. Econ Res-Ekonomska istraživanja. 2016;29(1):1005–20.

    Article  Google Scholar 

  2. Sharifi V, Rahimi Movaghar A, Mohammadi M, Goodarzi R, Izadian E, Farhoudian A et al. Analysis of mental health research in the Islamic Republic of Iran over 3 decades: a scientometric study. 2008.

  3. Ataie-Ashtiani B. Chinese and Iranian scientific publications: fast growth and poor ethics. Sci Eng Ethics. 2017;23(1):317–9.

    Article  PubMed  Google Scholar 

  4. Akhondzadeh S. Iranian science shows world's fastest growth: ranks 17th in science production in 2012. Avicenna J Med Biotechnol. 2013;5(3):139.

    PubMed  PubMed Central  Google Scholar 

  5. Agarwal A, Durairajanayagam D, Tatagari S, Esteves SC, Harlev A, Henkel R, et al. Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian J Androl. 2016;18(2):296–309.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Zou Z, Bian X, Huang Y, Wang Y, Yang C, et al. Fecal microbiota transplantation research output from 2004 to 2017: a bibliometric analysis. PeerJ. 2019;7:e6411.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pritchard A. Statistical bibliography or bibliometrics. J Doc. 1969;25(4):348–9.

    Google Scholar 

  8. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baudoin L, Sapinho D, Maddi A, Miotti L. Scientometric analysis of the term “microbiota” in research publications (1999-2017): A second youth of a century-old concept. FEMS Microbiol Lett. 2019;366(12).

  10. The unseen life of the soil. Science. 1927;65(1695):x–x. https://doi.org/10.1126/science.65.1695.0x.

  11. Crawford JJ, Shankle RJ. Application of newer methods to study the importance of root canal and oral microbiota in endodontics. Oral Surg Oral Med Oral Pathol. 1961;14(9):1109–23.

    Article  CAS  PubMed  Google Scholar 

  12. Gibbons R, Socransky S, Sawyer S, Kapsimalis B, MacDonald J. The microbiota of the gingival crevice area of man—II: the predominant cultivable organisms. Arch Oral Biol. 1963;8(3):281–9.

    Article  CAS  PubMed  Google Scholar 

  13. Socransky S, Gibbons R, Dale A, Bortnick L, Rosenthal E, Macdonald J. The microbiota of the gingival crevice area of man—I: Total microscopic and viable counts and counts of specific organisms. Arch Oral Biol. 1963;8(3):275–80.

    Article  CAS  PubMed  Google Scholar 

  14. Mann S, Masson FM, Oxford A. Effect of feeding aureomycin to calves upon the establishment of their normal rumen microflora and microfauna. Br J Nutr. 1954;8(3):246–52.

    Article  CAS  PubMed  Google Scholar 

  15. Baldwin R, Wood W, Emery R. Conversion of glucose-C14 to propionate by the rumen microbiota. J Bacteriol. 1963;85(6):1346–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mraz O, Cerny L, editors. Functional Composition+ Main Metabolites of Rumen Microflora in Cattle with Definite Food Intake. FOLIA MICROBIOLOGICA; 1964: INST MICROBIOLOGY, VIDENSKA 1083, PRAGUE 4 142 20, CZECH REPUBLIC.

  17. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Regan NHMPATlpngLPJLAMPDDXRFLBRRPMK. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007–2016. Microbiome. 2019;7:1–19.

    Article  Google Scholar 

  19. O’Mahony SM, Clarke G, Borre Y, Dinan T, Cryan J. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.

    Article  PubMed  CAS  Google Scholar 

  20. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med. 2012;4(137):137rv5-rv5.

    Article  CAS  Google Scholar 

  22. Collado MC, Cernada M, Baüerl C, Vento M, Pérez-Martínez G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes. 2012;3(4):352–65.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bar-Ilan J. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics. 2010;82(3):495–506.

    Article  CAS  Google Scholar 

  24. Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2009;84(2):523–38.

    PubMed  PubMed Central  Google Scholar 

  25. Team S. Science of science (Sci2) tool. Indiana University and SciTech Strategies. 2009.

  26. Nazemi M, Amini M, Salehi R. Difference in quantities of bifidobacteria from the intestinal microflora of individuals with type 2 diabetes and healthy individuals from Iran. Journal of Isfahan Medical School. 2013;31(247):1216–1225.

  27. Nasrollahzadeh D, Malekzadeh R, Ploner A, Shakeri R, Sotoudeh M, Fahimi S, et al. Variations of gastric corpus microbiota are associated with early esophageal squamous cell carcinoma and squamous dysplasia. Sci Rep. 2015;5:8820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heidarian F, Noormohammadi Z, Aghdaei HA, Alebouyeh M. Relative abundance of streptococcus spp. and its association with disease activity in inflammatory bowel disease patients compared with controls. Arch Clin Infect Dis. 2017;12(2) e57291.

  29. Nabizadeh E, Jazani NH, Bagheri M, Shahabi S. Association of altered gut microbiota composition with chronic urticaria. Ann Allergy Asthma Immunol. 2017;119(1):48–53.

    Article  PubMed  Google Scholar 

  30. Navab-Moghadam F, Sedighi M, Khamseh ME, Alaei-Shahmiri F, Talebi M, Razavi S, et al. The association of type II diabetes with gut microbiota composition. Microb Pathog. 2017;110:630–6.

    Article  CAS  PubMed  Google Scholar 

  31. Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zamani S, Shariati SH, Zali MR, Aghdaei HA, Asiabar AS, Bokaie S, et al. Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog. 2017;9(1):53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ghavami SB, Rostami E, Sephay AA, Shahrokh S, Balaii H, Aghdaei HA, et al. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb Pathog. 2018;117:285–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rezasoltani S, Aghdaei HA, Dabiri H, Sepahi AA, Modarressi MH, Mojarad EN. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb Pathog. 2018;124:244–9.

    Article  PubMed  Google Scholar 

  35. Rezasoltani S, Sharafkhah M, Aghdaei HA, Mojarad EN, Dabiri H, Sepahi AA, et al. Applying simple linear combination, multiple logistic and factor analysis methods for candidate fecal bacteria as novel biomarkers for early detection of adenomatous polyps and colon cancer. J Microbiol Methods. 2018;155:82–8.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Bayati L, Fasaei BN, Merat S, Bahonar A. Longitudinal analyses of gut-associated bacterial microbiota in ulcerative colitis patients. Arch Iran Med (AIM). 2018;21(12).

  37. Tavasoli S, Alebouyeh M, Naji M, Shakiba majd G, Shabani Nashtaei M, Broumandnia N, et al. The association of the intestinal oxalate degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study. BJU Int. 2019;125(1):133–143.

  38. Mohammadzadeh N, Kalani BS, Bolori S, Azadegan A, Gholami A, Mohammadzadeh R, et al. Identification of an intestinal microbiota signature associated with hospitalized patients with diarrhea. Acta Microbiol Immunol Hung. 2019:1–14.

  39. Heidarian F, Alebouyeh M, Shahrokh S, Balaii H, Zali MR. Altered fecal bacterial composition correlates with disease activity in inflammatory bowel disease and the extent of IL8 induction. Curr Res Transl Med. 2019;67(2):41–50.

    Article  PubMed  Google Scholar 

  40. Moossavi S, Engen PA, Ghanbari R, Green SJ, Naqib A, Bishehsari F, et al. Assessment of the impact of different fecal storage protocols on the microbiota diversity and composition: a pilot study. BMC Microbiol. 2019;19(1):145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nami Y, Haghshenas B, Khosroushahi AY. Molecular identification and probiotic potential characterization of lactic acid Bacteria isolated from human vaginal microbiota. Adv Pharm Bull. 2018;8(4):683–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mousavi SH, Mehrara S, Barzegari A, Ostadrahimi A. Correlation of gut microbiota profile with body mass index among school age children. Iran Red Crescent Med J. 2018;20(4):e58049 (In Press).

  43. Ejtahed H-S, Tito RY, Siadat S-D, Hasani-Ranjbar S, Hoseini-Tavassol Z, Rymenans L, et al. Metformin induces weight loss associated with gut microbiota alteration in non-diabetic obese women: a randomized double-blind clinical trial. Eur J Endocrinol. 2018;180(3):165–176(aop).

  44. Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, et al. Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: a randomized clinical trial. Appetite. 2019;141:104301.

    Article  PubMed  Google Scholar 

  45. Laffin MR, Tayebi Khosroshahi H, Park H, Laffin LJ, Madsen K, Kafil HS, et al. Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: microbial analysis from a randomized placebo-controlled trial. Hemodial Int. 2019;23(3):343–347.

  46. Ahmadi S, Nagpal R, Wang S, Gagliano J, Kitzman DW, Soleimanian-Zad S, et al. Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome–gut–brain axis modulation. J Nutr Biochem. 2019;67:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hosseinifard E-S, Morshedi M, Bavafa-Valenlia K, Saghafi-Asl M. The novel insight into anti-inflammatory and anxiolytic effects of psychobiotics in diabetic rats: possible link between gut microbiota and brain regions. Eur J Nutr. 2019;58(01):1–15.

  48. Ghazifard A, Kasra-Kermanshahi R, Far ZE. Identification of thermophilic and mesophilic bacteria and fungi in Esfahan (Iran) municipal solid waste compost. Waste Manag Res. 2001;19(3):257–61.

    Article  CAS  PubMed  Google Scholar 

  49. Seidavi A, Mirhosseini SZ, Shivazad M, Chamani M, Sadeghi AA. The development and evaluation of a duplex polymerase chain reaction detection of Bifidobacterium spp. and Lactobacillus spp. in duodenum, jejunum, ileum and cecum of broilers. J Rapid Meth Aut Microbiol. 2008;16(1):100–12.

    Article  CAS  Google Scholar 

  50. Ghiyasi M, Rezaei M, Sayyahzadeh H, Firouzbakhsh F, Attar A. Effects of prebiotic (Fermacto) in low protein diet on some blood parameters and intestinal microbiota of broiler chicks. Ital J Anim Sci. 2008;7(3):313–20.

    Article  Google Scholar 

  51. Jajarm H, Jahanbin A, Mokhber N, Gooyandeh S, Mansourian A, Beitollahi J. Effects of persica mouthwash on oral microbiota of cleft lip and palate patients during fixed orthodontic treatment. J Appl Sci. 2009;9:1593–6.

    Article  Google Scholar 

  52. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Collaborators GRC, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Llewellyn MS, Boutin S, Hoseinifar SH, Derome N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 2014;5:207.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Davari S, Talaei SA, Alaei H. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience. 2013;240:287–96.

    Article  CAS  PubMed  Google Scholar 

  55. Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol: WJG. 2014;20(20):6055–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif S-K, Asghari-Jafarabadi M, Zavvari S. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition. 2014;30(4):430–5.

    Article  CAS  PubMed  Google Scholar 

  57. Rastmanesh R. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem Biol Interact. 2011;189(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  58. Homayouni A, Bastani P, Ziyadi S. Mohammad-Alizadeh-Charandabi S, Ghalibaf M, Mortazavian AM et al. effects of probiotics on the recurrence of bacterial vaginosis: a review. J Low Genit Tract Dis. 2014;18(1):79–86.

    Article  PubMed  Google Scholar 

  59. Huang X, Fan X, Ying J, Chen S. Emerging trends and research foci in gastrointestinal microbiome. J Transl Med. 2019;17(1):67.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yao H, Wan J-Y, Wang C-Z, Li L, Wang J, Li Y, et al. Bibliometric analysis of research on the role of intestinal microbiota in obesity. PeerJ. 2018;6:e5091.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cho YA, Kim J. Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine. 2015;94(43) e1714.

  63. Sarao LK, Arora M. Probiotics, prebiotics, and microencapsulation: a review. Crit Rev Food Sci Nutr. 2017;57(2):344–71.

    Article  CAS  PubMed  Google Scholar 

  64. Mahmoudi R, Fakhri O, Farhoodi A, Kaboudari A, Rahimi SF. A review on probiotic dairy products as functional foods reported from Iran. Int J Food Nutr Saf. 2015;6(1):2.

    Google Scholar 

  65. Ejtahed H-S, Angoorani P, Soroush A-R, Atlasi R, Hasani-Ranjbar S, Mortazavian AM, et al. Probiotics supplementation for the obesity management; a systematic review of animal studies and clinical trials. J Funct Foods. 2019;52:228–42.

    Article  CAS  Google Scholar 

  66. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(S2):S1–S63.

    Article  CAS  PubMed  Google Scholar 

  67. Ejtahed H-S, Soroush A-R, Siadat S-D, Hoseini-Tavassol Z, Larijani B, Hasani-Ranjbar S. Targeting obesity management through gut microbiota modulation by herbal products: a systematic review. Complement Ther Med. 2018;42:184–204.

  68. Anderson A, McNaught C, Jain P, MacFie J. Randomised clinical trial of synbiotic therapy in elective surgical patients. Gut. 2004;53(2):241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ejtahed H-S, Tabatabaei-Malazy O, Soroush A-R, Hasani-Ranjbar S, Siadat S-D, Raes J, et al. Worldwide trends in scientific publications on association of gut microbiota with obesity. Iran J Basic Med Sci. 2019;22(1):65–71.

    PubMed  PubMed Central  Google Scholar 

  70. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480.

    Article  CAS  PubMed  Google Scholar 

  71. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022.

    Article  CAS  PubMed  Google Scholar 

  72. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102(31):11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027.

    Article  PubMed  Google Scholar 

  74. Integrative H. The Integrative human microbiome project. Nature. 2019;569(7758):641.

    Article  CAS  Google Scholar 

  75. Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in web of science, Scopus, and Google scholar for articles published in general medical journals. Jama. 2009;302(10):1092–6.

    Article  CAS  PubMed  Google Scholar 

  76. Mongeon P, Paul-Hus A. The journal coverage of web of science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213–28.

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was funded by the Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

H.A., H.D., H.E., F.R. and P.P. conceived of the presented idea. S.D.S., B.L. and P.P. developed the theory and H.A. performed the computations. N.F., A.S., S.A.B, and S.H.R. verified the analytical methods. H.E. investigated the molecular technique aspect of retrieved articles, H.E., H.A., and H.D. contributed to the interpretation of the results and S.D.S supervised the findings of this work. H.D. and H.A. wrote the manuscript in consultation with H.E. and N.F. All authors discussed the results, provided critical feedback, helped shape the research and analysis, and contributed to the final manuscript.

Corresponding authors

Correspondence to Hanieh-Sadat Ejtahed or Seyed-Davar Siadat.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aazami, H., DehghanBanadaki, H., Ejtahed, HS. et al. The landscape of microbiota research in Iran; a bibliometric and network analysis. J Diabetes Metab Disord 19, 163–177 (2020). https://doi.org/10.1007/s40200-020-00488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00488-2

Keywords

Navigation