Skip to main content

Advertisement

Log in

Relationship between hemoglobin A1c and serum troponin in patients with diabetes and cardiovascular events

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

Diabetes mellitus is a group of metabolic disorders associated with high risk for cardiovascular disease. Although troponins are primarily clinically used for the diagnosis of acute coronary syndrome, they are also used in risk assessment in patients with acute coronary syndrome as well as in a number of other conditions. The aim of this review was to investigate the relationship between hemoglobin A1c and serum troponin in patients with diabetes and cardiovascular events.

Methods

Hemoglobin A1c has been chosen as the best clinical indicator of glucose control and risk of micro and macrovascular complications. We investigated cardiac troponins as a group of markers of muscle injury which includes troponin T, troponin I and troponin C. Troponin T and I are specific for myocardial injury, compared to C which is specific for skeletal muscle.

Results

In this review, we showed that there was a causal relation between hemoglobin A1c levels and serum troponin concentrations. Hemoglobin A1c has shown to be a positive predictive factor of incidence, mortality and morbidity of conditions such as acute coronary syndrome, arrhythmias, stroke, pulmonary embolism and other conditions that causes troponin elevation by its release in circulation.

Conclusions

Chronic hyperglycemia decreases glomerular filtration and consequently decreases troponin elimination and also by affecting the heart microcirculation it leads to microvascular damage and consequently to ischemia which contribute to troponin concentration elevation. Furthermore, correlation between hemoglobin A1c and troponin concentration manifests in their prognostic value for mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(1):S62–7.

    Article  PubMed Central  Google Scholar 

  2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(1):S81–90.

    Article  Google Scholar 

  3. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

    Article  CAS  PubMed  Google Scholar 

  4. Ma H, Gao X, Lin HD, Hu Y, Li XM, Gao J, et al. Glycated haemoglobin in diagnosis of diabetes mellitus and pre-diabetes among middle-aged and elderly population: Shanghai Changfeng study. Biomed Environ Sci. 2013;26(3):155–62.

    CAS  PubMed  Google Scholar 

  5. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American diabetes association and the European association for the study of diabetes. In: Diabetes Care. 2006. p. 1963–1972.

  6. Ketema EB, Kibret KT. Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis. Arch Public Health. 2015;73:43.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Howard JA, Sommers R, Gould ON, Mancuso M. Effectiveness of an HbA1c tracking tool on primary care management of diabetes mellitus: glycaemic control, clinical practice and usability. Inform Prim Care. 2009;17(1):41–6.

    PubMed  Google Scholar 

  8. Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. 2016;11:95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennett CM, Guo M, Dharmage SC. HbA 1c as a screening tool for detection of type 2 diabetes: a systematic review. Diabet Med. 2007;24(4):333–43.

    Article  CAS  PubMed  Google Scholar 

  10. Ang SH, Thevarajah M, Alias Y, Khor SM. Current aspects in hemoglobin A1c detection: a review. Clin Chim Acta. 2015;439:202–11.

    Article  CAS  PubMed  Google Scholar 

  11. Radin MS. Pitfalls in hemoglobin A1c measurement: when results may be misleading. J Gen Intern Med. 2014;29(2):388–94.

    Article  PubMed  Google Scholar 

  12. Carr ME. Diabetes mellitus. J Diabetes Complicat. 2001;15(1):44–54.

    Article  CAS  Google Scholar 

  13. Rodbard HW, Blonde L, Braithwaite SS, Brett EM, Cobin RH, Handelsman Y, et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol. 2007;13(1):1–68.

    Google Scholar 

  14. Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini review. Curr Diabetes Rev. 2016;13(1):3–10.

    Article  CAS  Google Scholar 

  16. Stanton RC. Clinical challenges in diagnosis and management of diabetic kidney disease. Am J Kidney Dis. 2014;63(2):S3–21.

    Article  PubMed  Google Scholar 

  17. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.

    Article  PubMed  Google Scholar 

  18. Haneda M, Utsunomiya K, Koya D, Babazono T, Moriya T, Makino H, et al. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy. J Diabetes Investig. 2015;6(2):242–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Prim. 2015;1.

  20. Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett. 2013;587(8):1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X-X, Pan Y-H, Huang Y-M, Zhao H-L. Neuroendocrine hormone amylin in diabetes. World J Diabetes. 2016;7(9):189–97.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kohlgruber A, Lynch L. Adipose tissue inflammation in the pathogenesis of type 2 diabetes. Curr Diab Rep. 2015;15(11):92.

    Article  PubMed  CAS  Google Scholar 

  23. Snijder MB, Heine RJ, Seidell JC, Bouter LM, Stehouwer CDA, Nijpels G, et al. Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women the Hoorn study. Diabetes Care. 2006;29(11):2498–503.

    Article  CAS  PubMed  Google Scholar 

  24. Cox ME, Edelman D. Tests for screening and diagnosis of type 2 diabetes. Clin Diabetes. 2009;27(4):132–8.

    Article  Google Scholar 

  25. Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815–9.

    Article  CAS  PubMed  Google Scholar 

  26. Bertoluci MC, Rocha VZ. Cardiovascular risk assessment in patients with diabetes. Diabetol Metab Syndr. 2017;9(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sharma S, Jackson PG, Makan J. Cardiac troponins. J Clin Pathol. 2004;57(10):1025–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mythili S, Malathi N. Diagnostic markers of acute myocardial infarction. Biomed reports. 2015;3(6):743–8.

    Article  Google Scholar 

  29. Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res. 2017;113(14):1708–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korff S, Katus HA, Giannitsis E. Differential diagnosis of elevated troponins. Heart. 2006;92(7):987–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ricchiuti V, Voss EM, Ney A, Odland M, Anderson PAW, Apple FS. Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. Clin Chem. 1998;44(9):1919–24.

    Article  CAS  PubMed  Google Scholar 

  32. Shave R, Dawson E, Whyte G, George K, Ball D, Collinson P, et al. The cardiospecificity of the third-generation cTnT assay after exercise-induced muscle damage. Med Sci Sports Exerc. 2002;34(4):651–4.

    PubMed  Google Scholar 

  33. Bodor GS, Porterfield D, Voss EM, Smith S, Apple FS. Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. Clin Chem. 1995;41(12):1710–5.

    Article  CAS  PubMed  Google Scholar 

  34. Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, et al. How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care. 2018;7(6):553–60.

    Article  PubMed  Google Scholar 

  35. Wu AHB. Cardiac markers: from enzymes to proteins, diagnosis to prognosis, laboratory to bedside. Ann Clin Lab Sci. 1999;29(1):18–23.

    CAS  PubMed  Google Scholar 

  36. Collinson PO, Gaze DC, Morris F, Morris B, Price A, Goodacre S. Comparison of biomarker strategies for rapid rule out of myocardial infarction in the emergency department using ACC/ESC diagnostic criteria. Ann Clin Biochem. 2006;43(4):273–80.

    Article  CAS  PubMed  Google Scholar 

  37. Wu AHB, Valdes R, Apple FS, Gornet T, Stone MA, Mayfield-Stokes S, et al. Cardiac troponin-T immunoassay for diagnosis of acute myocardial infarction. Clin Chem. 1994;40(6):900–7.

    Article  CAS  PubMed  Google Scholar 

  38. Michielsen ECHJ, Diris JHC, Kleijnen VWVC, Wodzig WKWH, Van Dieijen-Visser MP. Investigation of release and degradation of cardiac troponin T in patients with acute myocardial infarction. Clin Biochem. 2007;40(12):851–5.

    Article  CAS  PubMed  Google Scholar 

  39. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Writing Group on the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction., Thygesen K, Alpert JS, White HD, Jaffe AS, Katus HA, Apple FS, Lindahl B, Morrow DA, Chaitman BA, Clemmensen PM, Johanson P, Hod H, Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasché P, Ravkilde J, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S, ESC Committee for Practice Guidelines (CPG). Third universal definition of myocardial infarction. Eur Heart J 2012; 33(20): 2551–2567.

  40. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S, ESC Scientific Document Group . 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2016; 37(3): 267–315.

  41. Babuin L, Jaffe AS. Troponin: The biomarker of choice for the detection of cardiac injury. Vol. 173, CMAJ. 2005. p. 1191–202.

  42. Tanindi A, Cemri M. Troponin elevation in conditions other than acute coronary syndromes. Vol. 7, Vascular Health and Risk Management. 2011. p. 597–603.

  43. Rubini Gimenez M, Twerenbold R, Reichlin T, Wildi K, Haaf P, Schaefer M, et al. Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. Eur Heart J. 2014;35(34):2303–11.

    Article  CAS  PubMed  Google Scholar 

  44. Haaf P, Reichlin T, Twerenbold R, Hoeller R, Rubini Gimenez M, Zellweger C, et al. Risk stratification in patients with acute chest pain using three high-sensitivity cardiac troponin assays. Eur Heart J. 2014;35(6):365–75.

    Article  CAS  PubMed  Google Scholar 

  45. Panteghini M. Standardization of cardiac troponin I measurements: The way forward? Vol. 51, Clinical Chemistry. 2005. p. 1594–1597.

    Article  CAS  PubMed  Google Scholar 

  46. Giuliani I, Bertinchant JP, Granier C, Laprade M, Chocron S, Toubin G, et al. Determination of cardiac troponin I forms in the blood of patients with acute myocardial infarction and patients receiving crystalloid or cold blood cardioplegia. Clin Chem. 1999;45(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  47. Fahie-Wilson MN, Carmichael DJ, Delaney MP, Stevens PE, Hall EM, Lamb EJ. Cardiac troponin T circulates in the free, intact form in patients with kidney failure. Clin Chem. 2006;52(3):414–20.

    Article  CAS  PubMed  Google Scholar 

  48. Mair J. What is new on cardiac troponin degradation? J Lab Precis Med. 2017;2:55.

    Article  Google Scholar 

  49. Katrukha IA, Kogan AE, Vylegzhanina AV, Serebryakova MV, Koshkina EV, Bereznikova AV, et al. Thrombin-mediated degradation of human cardiac troponin T. Clin Chem. 2017;63(6):1094–100.

    Article  CAS  PubMed  Google Scholar 

  50. Fridén V, Starnberg K, Muslimovic A, Ricksten S-E, Bjurman C, Forsgard N, et al. Clearance of cardiac troponin T with and without kidney function. Clin Biochem. 2017;50(9):468–74.

    Article  PubMed  CAS  Google Scholar 

  51. Fu S, Jin R, Luo L, Ye P. Baseline type 2 diabetes had a significant association with elevated high sensitivity cardiac troponin T levels in Chinese community-dwelling population: a 5-year prospective analysis. Nutr Metab (Lond). 2017;14(1):73.

    Article  CAS  Google Scholar 

  52. Whelton SP, McEvoy JW, Lazo M, Coresh J, Ballantyne CM, Selvin E. High-sensitivity cardiac troponin T (hs-cTnT) as a predictor of incident diabetes in the atherosclerosis risk in communities study. Diabetes Care. 2017;40(2):261–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kumar A, Cannon CP. Acute coronary syndromes: diagnosis and management, part I. Mayo Clin Proc. 2009;84(10):917–38.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sanchis J, Bardají A, Bosch X, Loma-Osorio P, Marín F, Sánchez PL, et al. Usefulness of high-sensitivity troponin T for the evaluation of patients with acute chest pain and no or minimal myocardial damage. Am Heart J. 2012;164(2):194–200.

    Article  CAS  PubMed  Google Scholar 

  55. Omland T, Pfeffer MA, Solomon SD, De Lemos JA, Røsjø H, Benth JŠ, et al. Prognostic value of cardiac troponin i measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;61(12):1240–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sinnaeve PR, Steg PG, Fox KA, Van de Werf F, Montalescot G, Granger CB, et al. Association of elevated fasting glucose with increased short-term and 6-month mortality in ST-segment elevation and non-ST-segment elevation acute coronary syndromes: the global registry of acute coronary events. Arch Intern Med. 2009;169(4):402–9.

    Article  CAS  PubMed  Google Scholar 

  57. Cavallini C, Savonitto S, Violini R, Arraiz G, Plebani M, Olivari Z, et al. Impact of the elevation of biochemical markers of myocardial damage on long-term mortality after percutaneous coronary intervention: results of the CK-MB and PCI study. Eur Heart J. 2005;26(15):1494–8.

    Article  PubMed  Google Scholar 

  58. Fang J, Alderman MH. Impact of the increasing burden of diabetes on acute myocardial infarction in New York City: 1990-2000. Diabetes. 2006;55(3):768–73.

    Article  CAS  PubMed  Google Scholar 

  59. Wiviott SD, Braunwald E, Angiolillo DJ, Meisel S, Dalby AJ, Verheugt FWA, Goodman SG, Corbalan R, Purdy DA, Murphy SA, McCabe C, Antman EM, TRITON-TIMI 38 Investigators. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial i. Circulation. 2008; 118(16):1626–1636.

    Article  CAS  PubMed  Google Scholar 

  60. Selvin E, Marinopoulos S, Berkenblit G, Rami T, FL B, NR P, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article  CAS  PubMed  Google Scholar 

  61. Segre CAW, Hueb W, Garcia RMR, Rezende PC, Favarato D, Strunz CMC, et al. Troponin in diabetic patients with and without chronic coronary artery disease. BMC Cardiovasc Disord. 2015;15(1):72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Savonitto S, Morici N, Nozza A, Cosentino F, Perrone Filardi P, Murena E, et al. Predictors of mortality in hospital survivors with type 2 diabetes mellitus and acute coronary syndromes. Diabetes Vasc Dis Res. 2018;15(1):14–23.

    Article  Google Scholar 

  63. Noguchi K, Sakakibara M, Asakawa N, Tokuda Y, Kamiya K, Yoshitani T, et al. Higher hemoglobin A1c after discharge is an independent predictor of adverse outcomes in patients with acute coronary syndrome– findings from the PACIFIC registry. Circ J. 2016;80(7):1607–14.

    Article  CAS  PubMed  Google Scholar 

  64. Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J. 2011;32(4):404–11.

    Article  CAS  PubMed  Google Scholar 

  65. Dubey TN, Mundada K, Arya A. Correlation of HbA1c with mortality and severity in acute coronary syndrome. Int J Contemp Med Res. 2016;3(8):2244–7.

    Google Scholar 

  66. Wettersten N, Maisel A. Role of cardiac troponin levels in acute heart failure. Card Fail Rev. 2015;1(2):102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gottdiener JS, Arnold M, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, et al. Predictors of congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol. 2000;35(6):1628–37.

    Article  CAS  PubMed  Google Scholar 

  68. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–84.

    Article  PubMed  Google Scholar 

  69. Gerstein HC, Swedberg K, Carlsson J, McMurray JJV, Michelson EL, Olofsson B, et al. The hemoglobin A1c level as a progressive risk factor for cardiovascular death, hospitalization for heart failure, or death in patients with chronic heart failure. Arch Intern Med. 2008;168(15):1699.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and heart failure risk among diabetic patients. J Clin Endocrinol Metab. 2014;99(2):E263–7.

    Article  CAS  PubMed  Google Scholar 

  71. Aguilar D, Bozkurt B, Ramasubbu K, Deswal A. Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. J Am Coll Cardiol. 2009;54(5):422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pazin-Filho A, Kottgen A, Bertoni AG, Russell SD, Selvin E, Rosamond WD, et al. HbA 1c as a risk factor for heart failure in persons with diabetes: the atherosclerosis risk in communities (ARIC) study. Diabetologia. 2008;51(12):2197–204.

    Article  CAS  PubMed  Google Scholar 

  73. Tomova GS, Nimbal V, Horwich TB. Relation between hemoglobin a(1c) and outcomes in heart failure patients with and without diabetes mellitus. Am J Cardiol. 2012;109(12):1767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Güder G, Gelbrich G, Edelmann F, Wachter R, Pieske B, Pankuweit S, et al. Reverse epidemiology in different stages of heart failure. Int J Cardiol. 2015;184:216–24.

    Article  PubMed  Google Scholar 

  75. Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. Vol. 43, Journal of the American College of Cardiology. 2004. p. 1439–1444.

    Article  PubMed  Google Scholar 

  76. Grembowski D, Ralston JD, Anderson ML. Hemoglobin A1c, comorbid conditions and all-cause mortality in older patients with diabetes: a retrospective 9-year cohort study. Diabetes Res Clin Pract. 2014;106(2):373–82.

    Article  CAS  PubMed  Google Scholar 

  77. Palta P, Huang ES, Kalyani RR, Golden SH, Yeh H-C. Hemoglobin A1c and mortality in older adults with and without diabetes: results from the National Health and nutrition examination surveys (1988–2011). Diabetes Care. 2017;40(4):453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and all-cause mortality risk among patients with type 2 diabetes. Int J Cardiol. 2016;202:490–6.

    Article  PubMed  Google Scholar 

  79. Zhong G-C, Ye M-X, Cheng J-H, Zhao Y, Gong J-P. HbA1c and risks of all-cause and cause-specific death in subjects without known diabetes: a dose-response meta-analysis of prospective cohort studies. Sci Rep. 2016;6:24071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aneja A, Tang WHW, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med. 2008;121(9):748–57.

    Article  PubMed  Google Scholar 

  81. Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart-deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc. 2013;2(6):e000433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy. J Am Coll Cardiol. 2008;51(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  83. Evers IM, de Valk HW, Visser GHA. Risk of complications of pregnancy in women with type 1 diabetes: nationwide prospective study in the Netherlands. BMJ. 2004;328(7445):915.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Abu-Sulaiman RM, Subaih B. Congenital heart disease in infants of diabetic mothers: echocardiographic study. Pediatr Cardiol. 2004;25(2):137–40.

    Article  CAS  PubMed  Google Scholar 

  85. Russell NE, Higgins MF, Amaruso M, Foley M, McAuliffe FM. Troponin T and pro-B-type natriuretic peptide in fetuses of type 1 diabetic mothers. Diabetes Care. 2009;32(11):2050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rasmussen AL, Lauszus FF. Umbilical pulsatility index is associated with fetalacidemia in type 1 diabetic pregnancies. Gynecol Obstet. 2013;03(03):1–3.

    Article  Google Scholar 

  87. Lee W-S, Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med. 2017;32(3):404–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sandhu R, Aronow WS, Rajdev A, Sukhija R, Amin H, D’aquila K, et al. Relation of cardiac troponin I levels with in-hospital mortality in patients with ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. Am J Cardiol. 2008; ;102: 632–634.

    Article  CAS  PubMed  Google Scholar 

  89. Fure B, Bruun Wyller T, Thommessen B. Electrocardiographic and troponin T changes in acute ischaemic stroke. J Intern Med. 2006;259(6):592–7.

    Article  CAS  PubMed  Google Scholar 

  90. Jensen JK, Atar D, Mickley H. Mechanism of troponin elevations in patients with acute ischemic stroke. Am J Cardiol. 2007;99(6):867–70.

    Article  CAS  PubMed  Google Scholar 

  91. James P, Ellis CJ, Whitlock RML, McNeil AR, Henley J, Anderson NE. Relation between troponin T concentration and mortality in patients presenting with an acute stroke: observational study. Br Med J. 2000;320(7248):1502–4.

    Article  CAS  Google Scholar 

  92. Dixit S, Castle M, Velu RP, Swisher L, Hodge C, Jaffe AS. Cardiac involvement in patients with acute neurologic disease: confirmation with cardiac troponin I. Arch Intern Med. 2000;160(20):3153–8.

    Article  CAS  PubMed  Google Scholar 

  93. Faiz KW, Thommessen B, Einvik G, Omland T, Rønning OM. Prognostic value of high-sensitivity cardiac troponin T in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(2):241–8.

    Article  PubMed  Google Scholar 

  94. Fan Y, Jiang M, Gong D, Man C, Chen Y. Cardiac troponin for predicting all-cause mortality in patients with acute ischemic stroke: a meta-analysis. Biosci Rep. 2018;38(2):BSR20171178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Budincevic H, Sremec J, Crnac P, Ostojic V, Galic E, Bielen I. Impact of troponin I on outcome of ischemic stroke patients. Rom J Intern Med. 2017;55(1):19–22.

    PubMed  Google Scholar 

  96. Scheitz JF, Nolte CH, Laufs U, Endres M. Application and interpretation of high-sensitivity cardiac troponin assays in patients with acute ischemic stroke. Stroke. 2015;46(4):1132–40.

    Article  PubMed  Google Scholar 

  97. Su Y-C, Huang K-F, Yang F-Y, Lin S-K Elevation of troponin I in acute ischemic stroke PeerJ 2016; 4: e1866.

  98. Mitsios JP, Ekinci EI, Mitsios GP, Churilov L, Thijs V. Relationship between glycated hemoglobin and stroke risk: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(11):e007858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hjalmarsson C, Manhem K, Bokemark L, Andersson B. The role of prestroke glycemic control on severity and outcome of acute ischemic stroke. Stroke Res Treat. 2014;2014:694569.

    PubMed  PubMed Central  Google Scholar 

  100. Sunanda T, Sampath Kumar NS, Amaresh Reddy P, Vallampalli G, PNS P. Role of HbA1c at admission on severity and functional outcome of ischemic stroke in patients with diabetes mellitus. J Neurol Neurophysiol. 2016;7(3):1–7.

    Google Scholar 

  101. Shin SB, Kim TU, Hyun JK, Kim JY. The prediction of clinical outcome using HbA1c in acute ischemic stroke of the deep branch of middle cerebral artery. Ann Rehabil Med. 2015;39(6):1011–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jing J, Pan Y, Zhao X, Zheng H, Jia Q, Li H, et al. Prognosis of ischemic stroke with newly diagnosed diabetes mellitus according to hemoglobin A1c criteria in Chinese population. Stroke. 2016;47(8):2038–44.

    Article  CAS  PubMed  Google Scholar 

  103. Latini R, Masson S, Pirelli S, Barlera S, Pulitano G, Carbonieri E, et al. Circulating cardiovascular biomarkers in recurrent atrial fibrillation: data from the GISSI-atrial fibrillation trial. J Intern Med. 2011;269(2):160–71.

    Article  CAS  PubMed  Google Scholar 

  104. Ben Yedder N, Roux JF, Paredes FA. Troponin elevation in supraventricular tachycardia: primary dependence on heart rate. Can J Cardiol. 2011;27(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  105. Liu Z, Cui L, Wang Y, Guo Y. Cardiac troponin I and ventricular arrhythmia in patients with chronic heart failure. Eur J Clin Investig. 2006;36(7):466–72.

    Article  CAS  Google Scholar 

  106. Agarwal G, Singh SK. Arrhythmias in type 2 diabetes mellitus. Indian J Endocrinol Metab. 2017;21(5):715–8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dafaalla MD, Nimir MN, Mohammed MI, Ali OA, Hussein A. Risk factors of diabetic cardiac autonomic neuropathy in patients with type 1 diabetes mellitus: a meta-analysis. Open Hear. 2016;3(2):e000336.

    Article  Google Scholar 

  108. Christiansen CB, Gerds TA, Olesen JB, Kristensen SL, Lamberts M, Lip GYH, et al. Atrial fibrillation and risk of stroke: a nationwide cohort study. Europace. 2016;18(11):1689–97.

    Article  PubMed  Google Scholar 

  109. Ruddox V, Sandven I, Munkhaugen J, Skattebu J, Edvardsen T, Otterstad JE. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: a systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24(14):1555–66.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Huisman MV, Barco S, Cannegieter SC, Le Gal G, Konstantinides SV, Reitsma PH, et al. Pulmonary embolism. Nat Rev Dis Prim. 2018;4:18028.

    Article  PubMed  Google Scholar 

  111. Movahed M-R, Hashemzadeh M, Jamal MM. The prevalence of pulmonary embolism and pulmonary hypertension in patients with type II diabetes mellitus. Chest. 2005;128(5):3568–71.

    Article  PubMed  Google Scholar 

  112. Lualdi JC, Goldhaber SZ. Right ventricular dysfunction after acute pulmonary embolism: pathophysiologic factors, detection, and therapeutic implications. Am Heart J. 1995;130(6):1276–82.

    Article  CAS  PubMed  Google Scholar 

  113. Meyer T, Binder L, Hruska N, Luthe H, Buchwald AB. Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction. J Am Coll Cardiol. 2000;36(5):1632–6.

    Article  CAS  PubMed  Google Scholar 

  114. Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Prognostic role of echocardiography among patients with acute pulmonary embolism and a systolic arterial pressure of 90 mm hg or higher. Arch Intern Med. 2005;165(15):1777–81.

    Article  PubMed  Google Scholar 

  115. Lerstad G, Brodin EE, Enga KF, Jorde R, Schirmer H, Njølstad I, et al. Hyperglycemia, assessed according to HbA 1c, and future risk of venous thromboembolism: the Tromsø study. J Thromb Haemost. 2014;12(3):313–9.

    Article  CAS  PubMed  Google Scholar 

  116. Bell EJ, Selvin E, Lutsey PL, Nambi V, Cushman M, Folsom AR. Glycemia (hemoglobin A1c) and incident venous thromboembolism in the atherosclerosis risk in communities cohort study. Vasc Med. 2013;18(5):245–50.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lemkes BA, Hermanides J, Devries JH, Holleman F, Meijers JC, Hoekstra JB. Hyperglycemia: a prothrombotic factor? J Thromb Haemost. 2010;8(8):1663–9.

    Article  CAS  PubMed  Google Scholar 

  118. Wu AHB. Release of cardiac troponin from healthy and damaged myocardium. Front Lab Med. 2017;1(3):144–50.

    Article  Google Scholar 

  119. Ostermann M, Ayis S, Tuddenham E, Lo J, Lei K, Smith J, et al. Cardiac troponin release is associated with biomarkers of inflammation and ventricular dilatation during critical illness. Shock. 2017;47(6):702–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ammann P, Fehr T, Minder E, Günter C, Bertel O. Elevation of troponin I in sepsis and septic shock. Intensive Care Med. 2001;27(6):965–9.

    Article  CAS  PubMed  Google Scholar 

  121. Bessière F, Khenifer S, Dubourg J, Durieu I, Lega J-C. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013;39(7):1181–9.

    Article  PubMed  CAS  Google Scholar 

  122. Alhamdi Y, Abrams ST, Cheng Z, Jing S, Su D, Liu Z, et al. Circulating histones are major mediators of cardiac injury in patients with sepsis. Crit Care Med. 2015;43(10):2094–103.

    Article  CAS  PubMed  Google Scholar 

  123. Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  124. Frydrych LM, Fattahi F, He K, Ward PA, Delano MJ. Diabetes and sepsis: risk, recurrence, and ruination. Front Endocrinol (Lausanne). 2017;8:271.

    Article  Google Scholar 

  125. Vallabhajosyula S, Sakhuja A, Geske JB, Kumar M, Poterucha JT, Kashyap R, et al. Role of admission troponin-T and serial troponin-T testing in predicting outcomes in severe sepsis and septic shock. J Am Heart Assoc. 2017;6(9):e005930.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Moskowitz A, Omar Y, Chase M, Lokhandwala S, Patel P, Andersen LW, et al. Reasons for death in patients with sepsis and septic shock. J Crit Care. 2017;38:284–8.

    Article  PubMed  Google Scholar 

  127. Gornik I, Gornik O, Gašparović V. HbA1c is outcome predictor in diabetic patients with sepsis. Diabetes Res Clin Pract. 2007;77(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  128. Small M, Lowe GD, MacCuish AC, Forbes CD. Thrombin and plasmin activity in diabetes mellitus and their association with glycaemic control. Q J Med. 1987;65(248):1025–31.

    CAS  PubMed  Google Scholar 

  129. Zhao Y, Zhang J, Zhang J, Wu J. Diabetes mellitus is associated with shortened activated partial thromboplastin time and increased fibrinogen values. PLoS One. 2011;6(1):e16470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tripodi A, Branchi A, Chantarangkul V, Clerici M, Merati G, Artoni A, et al. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis. 2011;31(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  131. Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem. 2016;62(5):699–707.

    Article  CAS  PubMed  Google Scholar 

  132. Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.

    Article  CAS  PubMed  Google Scholar 

  133. Bulum T, Duvnjak L. Insulin resistance in patients with type 1 diabetes: relationship with metabolic and inflammatory parameters. Acta Clinica Croatica. 2013;52:43–51.

    PubMed  Google Scholar 

  134. Nikiforov NG, Galstyan KO, Nedosugova LV, Elizova NV, Kolmychkova KI, Ivanova EA. Proinflammatory monocyte polarization in type 2 diabetes mellitus and coronary heart disease. Vessel Plus. 2017;1:192–5.

    CAS  Google Scholar 

  135. Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20(2):87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lachmandas E, Vrieling F, Wilson LG, Joosten SA, Netea MG, Ottenhoff TH, et al. The effect of hyperglycaemia on in vitro cytokine production and macrophage infection with mycobacterium tuberculosis. PLoS One. 2015;10(2):e0117941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Devaraj S, Jialal I, Yun J-M, Bremer A. Demonstration of increased toll-like receptor 2 and toll-like receptor 4 expression in monocytes of type 1 diabetes mellitus patients with microvascular complications. Metabolism. 2011;60(2):256–9.

    Article  CAS  PubMed  Google Scholar 

  138. Choi SH, Kim JH, Lim S, Lim JY, Kim KW, Park KS, et al. Monocyte count as a predictor of cardiovascular mortality in older Korean people. Age Ageing. 2017;46(3):433–8.

    Article  PubMed  Google Scholar 

  139. Villarreal-Molina MT, Antuna-Puente B. Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie. 2012;94(10):2143–9.

    Article  CAS  PubMed  Google Scholar 

  140. Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr. 2009;4(1):44–9.

    Article  PubMed  Google Scholar 

  141. Ekmekci H, Ekmekci OB. The role of adiponectin in atherosclerosis and thrombosis. Clin Appl Thromb Hemost. 2006;12(2):163–8.

    Article  CAS  PubMed  Google Scholar 

  142. Schulze MB, Rimm EB, Shai I, Rifai N, Hu FB. Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes 2004; 27(7): 1680-1687.

  143. Ammal EI, Dhafer El-Yassin H, Kareem Sachit Al-Janabi H. The association between adiponectin, insulin and troponin I in patients with acute myocardial infarction. Journal of Al-Nahrain University. 2012;15(3):15–22.

    Article  Google Scholar 

  144. Group TAC. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  145. Prabhu S, Pawade Y, Dhamnaskar R, Karamchandani R. Association of HbA1c with kidney dysfunction in diabetes mellitus and cardiovascular diseases. Vol. 9. People’s Journal of Scientific Research. 2016;9(2):1–6.

    Google Scholar 

  146. Goderis G, Van Pottelbergh G, Truyers C, Van Casteren V, De Clercq E, Van Den Broeke C, et al. Long-term evolution of renal function in patients with type 2 diabetes mellitus: a registry-based retrospective cohort study. BMJ Open. 2013;3(12):e004029.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yokoyama H, Kanno S, Takahashi S, Yamada D, Itoh H, Saito K, et al. Determinants of decline in glomerular filtration rate in nonproteinuric subjects with or withoutd iabetes and hypertension. Clin J Am Soc Nephrol. 2009;4(9):1432–40.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kuo I-C, Lin HY-H, Niu S-W, Hwang D-Y, Lee J-J, Tsai J-C, et al. Glycated hemoglobin and outcomes in patients with advanced diabetic chronic kidney disease. Sci Rep. 2016;6(1):20028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Oh SW, Kim YC, Koo HS, Jin DC, Na KY, Chae DW, et al. Glycated haemoglobin and the incidence of end-stage renal disease in diabetics. Nephrol Dial Transplant. 2011;26(7):2238–44.

    Article  CAS  PubMed  Google Scholar 

  150. Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, Bello A, James M, Turin TC, Tonelli M, Alberta Kidney Disease Network. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease. Arch Intern Med 2011;171(21):1920, 1927.

    Article  PubMed  Google Scholar 

  151. Moen MF, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Snyder RW, Berns JS. Use of insulin and oral hypoglycemic medications in patients with diabetes mellitus and advanced kidney disease. Semin Dial. 2004;17(5):365–70.

    Article  PubMed  Google Scholar 

  153. Biesenbach G, Raml A, Schmeckle B, Eichbauer-Sturm G. Decreased insulin requirement in relation to GFR in nephropathic type 1 and insulin-treated type 2 diabetic patients. Diabet Med. 2003;20(8):642–5.

    Article  CAS  PubMed  Google Scholar 

  154. Kalantar-Zadeh K, Kopple JD, Regidor DL, Jing J, Shinaberger CS, Aronovitz J, et al. A1C and survival in maintenance hemodialysis patients. Diabetes Care. 2007;30(5):1049–55.

    Article  PubMed  Google Scholar 

  155. Michos ED, Wilson LM, Yeh H-C, Berger Z, Suarez-Cuervo C, Stacy SR, et al. Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome. Ann Intern Med. 2014;161(7):491–501.

    Article  PubMed  Google Scholar 

  156. Pálsson R, Patel UD. Cardiovascular complications of diabetic kidney disease. Adv Chronic Kidney Dis. 2014;21(3):273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Astor BC, Hallan SI, Miller ER, Yeung E, Coresh J. Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol. 2008;167(10):1226–34.

    Article  PubMed  Google Scholar 

  158. Bello AK, Hemmelgarn B, Lloyd A, James MT, Manns BJ, Klarenbach S, Tonelli M, Alberta Kidney Disease Network. Associations among estimated glomerular filtration rate, proteinuria, and adverse cardiovascular outcomes. Clin J Am Soc Nephrol 2011; 6(6):1418–1426.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Pervan P, Svaguša T, Prkačin I, Vuković J, Radeljak A, Perkov S. Urine concentrations of high-sensitivity cardiac troponin I in healthy adults-preliminary reference intervals. Acta Medica Croat. 2018;72:461–5.

    Google Scholar 

  160. Svaguša T, Golub A, Pikivaca T, Savuk A, Perkov S, Jureković Ž, et al. High sensitive troponin concentration stability in dialysate of anuric patients on hemodialysis. Signa Vitae. 2018;14(1):35–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Bulum.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šimić, S., Svaguša, T., Prkačin, I. et al. Relationship between hemoglobin A1c and serum troponin in patients with diabetes and cardiovascular events. J Diabetes Metab Disord 18, 693–704 (2019). https://doi.org/10.1007/s40200-019-00460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-019-00460-9

Keywords

Navigation