Skip to main content

Advertisement

Log in

Integrated analysis of gene modulation profile identifies pathogenic factors and pathways in the liver of diabetic mice

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Type-2 diabetes mellitus (T2D) is a metabolic disorder that can progress to a serious chronic disease and frequently develops in obese individuals in association with various pathogenic complications that shorten the lifespan of these patients. The liver is an important organ regulating lipid metabolism, which is damaged in both obesity and T2D; however, the specific pathways involved in these pathogenic effects remain unclear. Establishing a suitable animal model that effectively mimics the human biological condition is a critical factor to allow for precise identification of T2D-related genes.

Methods

The KK.Cg-Ay mouse strain is one such model that has offered insight into obesity-related T2D pathogenesis. To comprehensively assess the association between obesity and T2D, in the present study, we performed microarray analysis on liver tissue samples of KK.Cg-Ay and KK-α/α wild-type mice to examine differences in gene expression and methylation patterns and their related biological processes and pathways.

Results

We found that inflammation accompanied by abnormal lipid metabolism led to the spontaneous mechanism of obesity-induced diabetes, resulting in differential expression of some genes related to the terms of insulin resistance and glucose tolerance. Surprisingly, disruption of steroid biosynthesis strongly facilitated the diabetic pathogenesis. To support these findings, we highlighted some candidate genes and determined their relationships in biological networks of obesity-induced T2D.

Conclusion

These findings provide valuable reference data that can facilitate further detailed investigations to elucidate the pathogenic mechanism of obesity-induced diabetes in mice, which can be associated with the human condition to inform new prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Association AD. Screening for type 2 diabetes. Diabetes Care. 2004;27:S11.

    Article  Google Scholar 

  2. Control CfD. Prevention. National diabetes statistics report, 2017. Atlanta: Centers for Disease Control and Prevention; 2017.

    Google Scholar 

  3. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492. https://doi.org/10.1161/CIR.0000000000000558.

    Article  PubMed  Google Scholar 

  4. Organization WH. Global strategy on diet, physical activity and health. 2004.

  5. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016;315(21):2292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Association AD. Type 2 diabetes in children and adolescents. Pediatrics. 2000;105(3):671–80.

    Article  Google Scholar 

  7. Organization WH. World Health Organization obesity and overweight fact sheet. 2016.

  8. Atlas ID. Brussels: International Diabetes Federation; 2011. International Diabetes Federation 2017.

  9. Lees T, Nassif N, Simpson A, Shad-Kaneez F, Martiniello-Wilks R, Lin Y, et al. Recent advances in molecular biomarkers for diabetes mellitus: a systematic review. Biomarkers. 2017;22(7):604–13. https://doi.org/10.1080/1354750X.2017.1279216.

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Weinshilboum R. Metformin pharmacogenomics: biomarkers to mechanisms. Diabetes. 2014;63(8):2609–10. https://doi.org/10.2337/db14-0609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiu HK, Tsai EC, Juneja R, Stoever J, Brooks-Worrell B, Goel A, et al. Equivalent insulin resistance in latent autoimmune diabetes in adults (LADA) and type 2 diabetic patients. Diabetes Res Clin Pract. 2007;77(2):237–44. https://doi.org/10.1016/j.diabres.2006.12.013.

    Article  CAS  PubMed  Google Scholar 

  12. Hemminki K, Liu X, Forsti A, Sundquist J, Sundquist K, Ji J. Subsequent type 2 diabetes in patients with autoimmune disease. Sci Rep. 2015;5:13871. https://doi.org/10.1038/srep13871.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsai S, Clemente-Casares X, Revelo XS, Winer S, Winer DA. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes. 2015;64(6):1886–97. https://doi.org/10.2337/db14-1488.

    Article  CAS  PubMed  Google Scholar 

  14. Joglekar MV, Januszewski AS, Jenkins AJ, Hardikar AA. Circulating microRNA biomarkers of diabetic retinopathy. Diabetes. 2016;65(1):22–4. https://doi.org/10.2337/dbi15-0028.

    Article  CAS  PubMed  Google Scholar 

  15. Basu R, Barosa C, Jones J, Dube S, Carter R, Basu A, et al. Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab. 2013;98(3):E409–17. https://doi.org/10.1210/jc.2012-3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharabi K, Tavares CD, Rines AK, Puigserver P. Molecular pathophysiology of hepatic glucose production. Mol Asp Med. 2015;46:21–33. https://doi.org/10.1016/j.mam.2015.09.003.

    Article  CAS  Google Scholar 

  17. Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci. 2018;1411(1):21–35. https://doi.org/10.1111/nyas.13435.

    Article  CAS  PubMed  Google Scholar 

  18. Iwatsuka H, Shino A, Suzuoki Z. General survey of diabetic features of yellow KK mice. Endocrinol Jpn. 1970;17(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  19. Donath MY, Størling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J Mol Med. 2003;81(8):455–70.

    Article  CAS  PubMed  Google Scholar 

  20. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54(Suppl 2):S97–107. https://doi.org/10.2337/diabetes.54.suppl_2.s97.

    Article  CAS  PubMed  Google Scholar 

  21. Kim S, Kim J, Lee K, Park T, Baek H, Yu H, et al., editors. Effect of liver transplantation on glucose levels in patients with prediabetes or type 2 diabetes. Transplantation proceedings: Elsevier; 2014.

  22. Ikeda H. KK mouse. Diabetes Res Clin Pract. 1994;24(Suppl):S313–6.

    Article  PubMed  Google Scholar 

  23. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35(Database issue):D61–5. https://doi.org/10.1093/nar/gkl842.

    Article  CAS  PubMed  Google Scholar 

  24. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2012;41(D1):D991–D5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015;44(D1):D457–D62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D61. https://doi.org/10.1093/nar/gkw1092.

    Article  CAS  PubMed  Google Scholar 

  28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, et al. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 2011;39(Database issue):D685–90. https://doi.org/10.1093/nar/gkq1039.

    Article  CAS  PubMed  Google Scholar 

  30. Finger JH, Smith CM, Hayamizu TF, McCright IJ, Xu J, Law M, et al. The mouse gene expression database (GXD): 2017 update. Nucleic Acids Res. 2017;45(D1):D730–D6. https://doi.org/10.1093/nar/gkw1073.

    Article  CAS  PubMed  Google Scholar 

  31. Smith CL, Blake JA, Kadin JA, Richardson JE, Bult CJ, Group MGD. Mouse genome database (MGD)-2018: knowledgebase for the laboratory mouse. Nucleic Acids Res. 2017;46(D1):D836–D42.

    Article  PubMed Central  Google Scholar 

  32. Kaminitz A, Yolcu ES, Stein J, Yaniv I, Shirwan H, Askenasy N. Killer Treg restore immune homeostasis and suppress autoimmune diabetes in prediabetic NOD mice. J Autoimmun. 2011;37(1):39–47. https://doi.org/10.1016/j.jaut.2011.03.003.

    Article  CAS  PubMed  Google Scholar 

  33. Grossmann V, Schmitt VH, Zeller T, Panova-Noeva M, Schulz A, Laubert-Reh D, et al. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care. 2015;38(7):1356–64. https://doi.org/10.2337/dc14-3008.

    Article  CAS  PubMed  Google Scholar 

  34. Gryglewski RJ. Steroid hormones, anti-inflammatory steroids and prostaglandins. Pharmacol Res Commun. 1976;8(4):337–48.

    Article  CAS  PubMed  Google Scholar 

  35. Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci. 1993;14(12):436–41.

    Article  CAS  PubMed  Google Scholar 

  36. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13. https://doi.org/10.1016/j.mce.2010.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1-2):20–32. https://doi.org/10.1159/000362724.

    Article  CAS  PubMed  Google Scholar 

  38. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461.

    Article  CAS  PubMed  Google Scholar 

  39. Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 2016;26(1):6–16. https://doi.org/10.1016/j.tcb.2015.08.010.

    Article  CAS  PubMed  Google Scholar 

  40. Baeuerle PA, Henkel T. Function and activation of NF-kappaB in the immune system. Annu Rev Immunol. 1994;12(1):141–79.

    Article  CAS  PubMed  Google Scholar 

  41. Liang Y, Zhou Y, Shen P. NF-kappaB and its regulation on the immune system. Cell Mol Immunol. 2004;1(5):343–50.

    CAS  PubMed  Google Scholar 

  42. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transd Target Ther. 2017;2:17023.

    Article  Google Scholar 

  43. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309.

    Article  CAS  PubMed  Google Scholar 

  44. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9. https://doi.org/10.1038/35036052.

    Article  CAS  PubMed  Google Scholar 

  45. Head BP, Patel HH, Insel PA. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta. 2014;1838(2):532–45. https://doi.org/10.1016/j.bbamem.2013.07.018.

    Article  CAS  PubMed  Google Scholar 

  46. Fonseca MC, Franca A, Florentino RM, Fonseca RC, Lima Filho ACM, Vidigal PTV, et al. Cholesterol-enriched membrane microdomains are needed for insulin signaling and proliferation in hepatic cells. Am J Physiol Gastrointest Liver Physiol. 2018;315(1):G80–94. https://doi.org/10.1152/ajpgi.00008.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6(5):a019133. https://doi.org/10.1101/cshperspect.a019133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schübeler D. Function and information content of DNA methylation. Nature. 2015;517(7534):321.

    Article  PubMed  Google Scholar 

  49. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of human gene-body DNA methylation. Oncotarget. 2012;3(4):462–74. https://doi.org/10.18632/oncotarget.497.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to staffs within the research and clinical teams at Genetic Center, China Medical University Hospital for help in obtaining and processing samples for this research.

Funding

This work was supported by grants from China Medical University Hospital in Taiwan (DMR-107-048 and DMR-108-121.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shih-Yin Chen or Fuu-Jen Tsai.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.Q., Hsu, YM., Huang, YC. et al. Integrated analysis of gene modulation profile identifies pathogenic factors and pathways in the liver of diabetic mice. J Diabetes Metab Disord 18, 471–485 (2019). https://doi.org/10.1007/s40200-019-00453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-019-00453-8

Keywords

Navigation