Skip to main content

Advertisement

Log in

Effect of glycemic control and disease duration on cardiac autonomic function and oxidative stress in type 2 diabetes mellitus

  • Research Article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Cardiac autonomic neuropathy (CAN) is a commonly overlooked complication of type 2 diabetes mellitus (T2DM), with a complex pathogenesis involving hyperglycemia-induced oxidative stress which results in neuronal ischemia and cellular death. The level of hyperglycemia as well as disease duration might be significant determinants of the prognosis of T2DM, but limited studies have explored their relationship with these diabetic complications. Therefore, the purpose of this study was to examine the effect of glycemic control and disease duration on cardiac autonomic function and oxidative stress in patients with T2DM.

Methods

60 T2DM patients along with 63 healthy controls were recruited for the study. Diabetic patients were further classified based on glycemic control (HbA1c levels <8% vs. ≥8%) and disease duration (<5 vs. 5–10 vs. >10 years). All participants were assessed for cardiac autonomic function (HRR: heart rate recovery; HRV: heart rate variability), levels of antioxidant enzymes (CAT: catalase; SOD: superoxide dismutase), serum nitric oxide (NO) and other cardiometabolic risk factors (resting blood pressure, glycemic and lipid profile).

Results

T2DM patients showed a significant reduction in HRR, HRV, CAT, SOD and an increase in LFnu, LF: HF ratio and NO. These impairments were significantly greater for the group with poor glycemic control (p < 0.05). However, no difference for these parameters was observed with respect to different disease durations.

Conclusion

Cardiac autonomic regulation and endogenous antioxidant defense were compromised and levels of nitric oxide found to be raised in patients with Type 2 diabetes. These findings were more pronounced in subjects with poor glycemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T2DM:

Type 2 Diabetes Mellitus

CAN:

Cardiac Autonomic Neuropathy

NO:

Nitric Oxide

ROS:

Reactive Oxygen Species

HRR:

Heart Rate Recovery

HRV:

Heart Rate Variability

CAT:

Catalase

SOD:

Superoxide Dismutase

HDL-c:

High-density lipoprotein cholesterol

LDL-c:

Low-density lipoprotein cholesterol

SBP:

Systolic Blood Pressure

DBP:

Diastolic Blood Pressure

AvgNN:

Mean of N-N intervals

SDNN:

Standard deviation of N-N intervals

RMSSD:

Square root of the mean squared differences between adjacent RR intervals

pNN50:

Percentage of interval differences of adjacent RR intervals greater than 50 milliseconds derived from differences between consecutive RR intervals

TP:

Total power

LF nu:

Low frequency power normalize units

HF nu:

High frequency power normalize units LF/HF ratio: Ratio of low and high frequency power

eNOS:

endothelial Nitric Oxide Synthase

nNOS:

neuronal Nitric Oxide Synthase

iNOS:

inducible Nitric Oxide Synthase.

References

  1. International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium:International Diabetes Federation, 2017.

  2. González EM, Johansson S, Wallander MA, Rodríguez LG. Trends in the prevalence and incidence of diabetes in the UK: 1996–2005. J Epidemiol Community Health. 2009 Apr 1;63(4):332–6.

    Article  PubMed  Google Scholar 

  3. American Diabetes Association. Standards of medical care in diabetes—2012. Diabetes Care. 2012 Jan 1;35(Supplement 1):S11–63.

    Article  Google Scholar 

  4. Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes. 2014 Feb 15;5(1):17–39.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hazari MA, Khan RT, Reddy BR, Hassan MA. Cardiovascular autonomic dysfunction in type 2 diabetes mellitus and essential hypertension in a south Indian population. Neurosciences (Riyadh). 2012 Apr 1;17(2):173–5.

    Google Scholar 

  6. Pappachan JM, Sebastian J, Bino BC, Jayaprakash K, Vijayakumar K, Sujathan P, et al. Cardiac autonomic neuropathy in diabetes mellitus: prevalence, risk factors and utility of corrected QT interval in the ECG for its diagnosis. Postgrad Med J. 2008 Apr 1;84(990):205–10.

    Article  PubMed  CAS  Google Scholar 

  7. Verma S, Bhati P, Ahmad I, Masroor S, Ali K, Singla D, et al. Co-existence of hypertension worsens post-exercise cardiac autonomic recovery in type 2 diabetes. Indian Heart J. 2018 Jul;18

  8. Wada R, Yagihashi S. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann N Y Acad Sci. 2005 Jun;1043(1):598–604.

    Article  PubMed  CAS  Google Scholar 

  9. Griesmacher A, Kindhauser M, Andert SE, Schreiner W, Toma C, Knoebl P, et al. Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. Am J Med. 1995 May 1;98(5):469–75.

    Article  PubMed  CAS  Google Scholar 

  10. Palanduz S, Ademoğlu E, Gökkuşu C, Tamer S. Plasma antioxidants and type 2 diabetes mellitus. Res Commun Mol Pathol Pharmacol. 2001;109(5–6):309–18.

    PubMed  CAS  Google Scholar 

  11. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008 Jun 12;358(24):2560–72.

    Article  Google Scholar 

  12. Kalyani RR, Saudek CD, Brancati FL, Selvin E. Association of diabetes, comorbidities, and A1C with functional disability in older adults: results from the National Health and nutrition examination survey (NHANES), 1999-2006. Diabetes Care. 2010;33:1055–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Stolar M. Glycemic control and complications in type 2 diabetes mellitus. Am J Med. 2010 Mar 31;123(3):S3–11.

    Article  PubMed  CAS  Google Scholar 

  14. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  PubMed  CAS  Google Scholar 

  15. Ismail-Beigi F. Craven T, Banerji MA, Basile J, Calles J, Cohen RM, Cuddihy R, Cushman WC, Genuth S, Grimm RH Jr, Hamilton BP, Hoogwerf B, Karl D, Katz L, Krikorian a, O’Connor P, pop-Busui R, Schubart U, Simmons D, Taylor H, Thomas a, Weiss D, Hramiak I; ACCORD trial group. Effect of intensive treatment of hyperglycaemiaon microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jelinek HF, Osman WM, Khandoker AH, Khalaf K, Lee S, Almahmeed W, et al. Clinical profiles, comorbidities and complications of type 2 diabetes mellitus in patients from United Arab Emirates. BMJ Open Diabetes Research and Care. 2017 Aug;5(1):e000427.

    Article  PubMed  Google Scholar 

  17. Misra A, Khurana L. Obesity-related non-communicable diseases: south Asians vs white Caucasians. Int J Obes. 2011 Feb;35(2):167–87.

    Article  CAS  Google Scholar 

  18. Verma S, Moiz JA, Anwer S, Alghadir AH, Hussain ME. A dose-response study of aerobic training for oxygen uptake, oxidative stress and cardiac autonomic function in type 2 diabetes mellitus: study protocol for a randomized controlled trial. Trials. 2018 Dec;19(1):289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sacre JW, Jellis CL, Coombes JS, Marwick TH. Diagnostic accuracy of heart-rate recovery after exercise in the assessment of diabetic cardiac autonomic neuropathy. Diabet Med. 2012 Sep 1;29(9):e312–20.

    Article  PubMed  CAS  Google Scholar 

  20. Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus. Circulation. 2007 Jan 2;115(1):114–26.

    Article  PubMed  Google Scholar 

  21. Pagani M, Malfatto G, Pierini S, Casati R, Masu AM, Poli M, et al. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nerv Syst. 1988 Aug 1;23(2):143–53.

    Article  PubMed  CAS  Google Scholar 

  22. Bernardi L, Ricordi L, Lazzari P, Solda P, Calciati A, Ferrari MR, et al. Impaired circadian modulation of sympathovagal activity in diabetes. A possible explanation for altered temporal onset of cardiovascular disease. Circulation. 1992 Nov 1;86(5):1443–52.

    Article  PubMed  CAS  Google Scholar 

  23. Liao D, Cai J, Brancati FL, Folsom A, Barnes RW, Tyroler HA, et al. Association of vagal tone with serum insulin, glucose, and diabetes mellitus—the ARIC study. Diabetes Res Clin Pract. 1995 Dec 1;30(3):211–21.

    Article  PubMed  CAS  Google Scholar 

  24. Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, et al. Association of hyperglycemia with reduced heart rate variability (the Framingham heart study). Am J Cardiol. 2000 Aug 31;86(3):309–12.

    Article  PubMed  CAS  Google Scholar 

  25. Santini V, Ciampittiello G, Gigli F, Bracaglia D, Baroni A, Cicconetti E, et al. QTc and autonomic neuropathy in diabetes: effects of acute hyperglycaemia and n-3 PUFA. Nutr Metab Cardiovasc Dis. 2007 Dec 31;17(10):712–8.

    Article  PubMed  CAS  Google Scholar 

  26. Rothberg LJ, Lees T, Clifton-Bligh R, Lal S. Association between heart rate variability measures and blood glucose levels: implications for noninvasive glucose monitoring for diabetes. Diabetes Technol Ther. 2016 Jun 1;18(6):366–76.

    Article  PubMed  CAS  Google Scholar 

  27. Tarvainen MP, Cornforth DJ, Kuoppa P, Lipponen JA, Jelinek HF. Complexity of heart rate variability in type 2 diabetes-effect of hyperglycemia. InEngineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE 2013 Jul 3 (pp. 5558–5561). IEEE.

  28. Godin DV, Wohaieb SA, Garnett ME, Goumeniouk AD. Antioxidant enzyme alterations in experimental and clinical diabetes. Mol Cell Biochem. 1988 Dec 1;84(2):223–31.

    Article  PubMed  CAS  Google Scholar 

  29. Paolisso G, Giugliano D. Oxidative stress and insulin action: is there a relationship? Diabetologia. 1996 Mar 1;39(3):357–63.

    Article  PubMed  CAS  Google Scholar 

  30. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  PubMed  CAS  Google Scholar 

  31. Mercuri F, Quagliaro L, Ceriello A. Oxidative stress in diabetes. Diabetes Technol Ther. 2000;2(4):589–600.

    Article  PubMed  CAS  Google Scholar 

  32. Likidlilid A, Patchanans N, Peerapatdit T. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thail. 2010;93:682–93.

    Google Scholar 

  33. Al-Rawi NH. Oxidative stress, antioxidant status and lipid profile in the saliva of type 2 diabetics. Diab Vasc Dis Res. 2011;8:22–8.

    Article  PubMed  Google Scholar 

  34. Dincer Y, Akcay T, Alademir Z, Ilkova H. Effect of oxidative stress on glutathione pathway in RBCs from patients with IDDM. Metabolism. 2002;51:1360–2.

    Article  PubMed  CAS  Google Scholar 

  35. Ceriello A, dello Russo P, Amstad P, Cerutti P. High glucose induces antioxidant enzymes in human endothelial cells in culture: evidence linking hyperglycemia and oxidative stress. Diabetes. 1996 Apr 1;45(4):471–7.

    Article  PubMed  CAS  Google Scholar 

  36. Sechi LA, Ceriello A, Griffin CA, Catena C, Amstad P, Schambelan M, et al. Renal antioxidant enzyme mRNA levels are increased in rats with experimental diabetes mellitus. Diabetologia. 1997 Jan;40(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  37. Lodovici M, Bigagli E, Bardini G, Rotella CM. Lipoperoxidation and antioxidant capacity in patients with poorly controlled type 2 diabetes. Toxicol Ind Health. 2009;25:337–41.

    Article  PubMed  CAS  Google Scholar 

  38. Bigagli E, Raimondi L, Mannucci E, Colombi C, Bardini G, Rotella CM, et al. Lipid and protein oxidation products, antioxidant status and vascular complications in poorly controlled type 2 diabetes. The British Journal of Diabetes & Vascular Disease. 2012;12:33–9.

    Article  CAS  Google Scholar 

  39. Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, et al. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci. 2013 Mar;5(3):213–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Madi M, Babu S, Kumari S, Shetty S, Achalli S, Madiyal A, et al. Status of serum and salivary levels of superoxide dismutase in type 2 diabetes mellitus with oral manifestations: a case control study. Ethiopian journal of health sciences. 2016;26(6):523–32.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Adela R, Nethi SK, Bagul PK, Barui AK, Mattapally S, Kuncha M, et al. Hyperglycaemia enhances nitric oxide production in diabetes: a study from south Indian patients. PLoS One. 2015 Apr 20;10(4):e0125270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Aydın A, Orhan H, Sayal A, Özata M, Şahin G, Işımer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem. 2001 Feb;34(1):65–70.

    Article  PubMed  Google Scholar 

  43. Izumi N, Nagaoka T, Mori F, Sato E, Takahashi A, Yoshida A. Relation between plasma nitric oxide levels and diabetic retinopathy. Jpn J Ophthalmol. 2006;50:465–8.

    Article  PubMed  CAS  Google Scholar 

  44. Ozcelik O, Algul S. Nitric oxide levels in response to the patients with different stage of diabetes. Cell Mol Biol (Noisy le Grand). 2017;63(1):49–52.

    Article  CAS  Google Scholar 

  45. Ghosh A, Sherpa ML, YazumBhutia RP, Dahal S. Serum nitric oxide status in patients with type 2 diabetes mellitus in Sikkim. International Journal of Applied and Basic Medical Research. 2011 Jan;1(1):31–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tessari P, Cecchet D, Cosma A, Vettore M, Coracina A, Millioni R, Iori E, Puricelli L, Avogaro A, Vedovato M (2010) Nitric oxide synthesis is reduced in subjects with type 2 diabetes and nephropathy. Diabetes 59:2152–2159. pmid:20484137.

  47. Wu G. Nitric oxide synthesis and the effect of aminoguanidine and NG-monomethyl-L-arginine on the onset of diabetes in the spontaneously diabetic BB rat. Diabetes 1995 Mar 1;44(3):360–4.a, 364.

  48. Fujimoto M, Shimizu N, Kunii K, Martyn JAJ, Ueki K, Kaneki M (2005) A role for iNOS in fasting hyperglycemia and impaired insulin signalling in the liver of obese diabetic mice. Diabetes 54(5): 1340–1348. pmid:15855318.

  49. Pietroa ND, Tomoa PD, Silvestrea SD, Giardinelli A, Pipino C, et al. (2013) Increased iNOS activity in vascular smooth muscle cells from diabetic rats: potential role of Ca2þ/calmodulin-dependent protein kinase II delta 2 (CaMKIId2). Atherosclerosis 226:88–94. pmid:23177014.

  50. Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension. 2002 Jun 1;39(6):1088–94.

    Article  PubMed  CAS  Google Scholar 

  51. Nosarev AV, Smagliy LV, Anfinogenova Y, Popov SV, Kapilevich LV. Exercise and NO production: relevance and implications in the cardiopulmonary system. Frontiers in cell and developmental biology. 2015 Jan 7;2:73.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank all the participants involved in the study and acknowledge the contribution of the staff at the Centre for Physiotherapy and Rehabilitation Sciences, and DDU Kaushal Kendra, for facilitating data collection for this study.

Author information

Authors and Affiliations

Authors

Contributions

SV and MEH contributed to the creation and design of the study. The co-authors provided expertise as follows: SV and IA were involved in enrolling the patients and assessments. SV and MEH drafted the global study methodology and statistical methods. SV and RA performed the biochemical analyses. DS and KA were involved in manuscript revision and critical review. All authors helped to write the article and have proofread and approved the final manuscript.

Corresponding author

Correspondence to Shalini Verma.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

The study was approved by the Institutional Ethical Committee, Jamia Millia Islamia. (Date: 23 February 2016; IEC reference No: 17/9/43/JMI/IEC/2015). All procedures followed were in accordance with the institutional ethical standards for human experimentation and with the Helsinki Declaration. All participants were given an information sheet explaining the study purpose, methodology as well as their rights as research subjects and written consent was obtained.

Data sharing statement

No additional data available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Alam, R., Ahmad, I. et al. Effect of glycemic control and disease duration on cardiac autonomic function and oxidative stress in type 2 diabetes mellitus. J Diabetes Metab Disord 17, 149–158 (2018). https://doi.org/10.1007/s40200-018-0354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-018-0354-6

Keywords

Navigation