Skip to main content

Advertisement

Log in

Eradicating the tumor “seeds”: nanomedicines-based therapies against cancer stem cells

  • Review Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Objectives

Cancer stem cells (CSCs), a small subpopulation of cells with high tumorigenesis and strong intrinsic drug resistance, exhibit self-renewal and differentiation abilities. CSCs play a crucial role in tumor progression, drug resistance, recurrence and metastasis,and conventional therapy is not enough to eradicate them. Therefore, developing novel therapies targeting CSCs to increase drug sensitivity and preventing relapse is essential. The objective of this review is to present nanotherapies that target and eradicate the tumor “seeds”.

Evidence acquisition

Evidence was collected and sorted from the literature ranging from 2000 to 2022, using appropriate keywords and key phrases as search terms within scientific databases such as Web of Science, PubMed and Google Scholar.

Results

Nanoparticle drug delivery systems have been successfully applied to gain longer circulation time, more precise targeting capability and better stability during cancer treatment. Nanotechnology-based strategies that have been used to target CSCs, include (1) encapsulating small molecular drugs and genes by nanotechnology, (2) targeting CSC signaling pathways, (3) utilizing nanocarriers targeting for specific markers of CSCs, (4) improving photothermal/ photodynamic therapy (PTT/PDT), 5)targeting the metabolism of CSCs and 6) enhancing nanomedicine-aided immunotherapy.

Conclusion

This review summarizes the biological hallmarks and markers of CSCs, and the nanotechnology-based therapies to kill them. Nanoparticle drug delivery systems are appropriate means for delivering drugs to tumors through enhanced permeability and retention (EPR) effect. Furthermore, surface modification with special ligands or antibodies improves the recognition and uptake of tumor cells or CSCs. It is expected that this review can offer insights into features of CSCs and the exploration of targeting nanodrug delivery systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    CAS  PubMed  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821.

    CAS  PubMed  Google Scholar 

  5. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946.

    CAS  PubMed  Google Scholar 

  6. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, MacLaughlin DT, Donahoe PK. Ovarian cancer side population defines cells with stem cell-like characteristics and mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A. 2006;103:11154.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2006;445:106.

    PubMed  Google Scholar 

  8. Zhu P, Fan Z. Cancer stem cells and tumorigenesis. Biophys Rep. 2018;4:178–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234:8381–95.

    CAS  PubMed  Google Scholar 

  10. Islam F, Qiao B, Smith RA, Gopalan V, Lam AKY. Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol. 2015;98:184–91.

    CAS  PubMed  Google Scholar 

  11. Paul R, Dorsey JF, Fan Y. Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications. Pharmacol Ther. 2022;231:107985.

    CAS  PubMed  Google Scholar 

  12. Zhang D-Y, Monteiro MJ, Liu J-P. Mechanisms of cancer stem cell senescence: current understanding and future perspectives. Clin Exp Pharmacol Physiol. 2021;48:1185–202.

    CAS  PubMed  Google Scholar 

  13. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    CAS  PubMed  Google Scholar 

  14. Nathansen J, Meyer F, Müller L, Schmitz M, Borgmann K, Dubrovska A. Beyond the double-strand breaks: the role of DNA repair proteins in cancer stem-cell regulation. Cancers. 2021;13:4818.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in therapeutic targeting of cancer stem cells within the tumor microenvironment: an updated review. Cells. 2020;9:1896.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Toh TB, Lim JJ, Chow EK-H. Epigenetics in cancer stem cells. Mol Cancer. 2017;16:29.

    PubMed  PubMed Central  Google Scholar 

  17. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    CAS  PubMed  Google Scholar 

  18. Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 2021;21:62.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wainwright EN, Scaffidi P. Epigenetics and Cancer Stem cells: unleashing, hijacking, and restricting Cellular plasticity. Trends Cancer. 2017;3:372–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. De Robertis M, Poeta ML, Signori E, Fazio VM. Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer Biol. 2018;53:232–47.

    PubMed  Google Scholar 

  21. Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 2018;69:152–63.

    CAS  PubMed  Google Scholar 

  22. Nazio F, Po A, Abballe L, Ballabio C, Diomedi Camassei F, Bordi M, Camera A, Caruso S, Caruana I, Pezzullo M, Ferraina C, Milletti G, Gianesello M, Reddel S, De Luca CD, Ceglie D, Marinelli S, Campello S, Papaleo E, Miele E, Cacchione A, Carai A, Vinci M, Velardi E, De Angelis B, Tiberi L, Quintarelli C, Mastronuzzi A, Ferretti E, Locatelli F, Cecconi F. Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathol. 2021;142:537–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. He Y, Jiang X, Duan L, Xiong Q, Yuan Y, Liu P, Jiang L, Shen Q, Zhao S, Yang C, Chen Y. LncRNA PKMYT1AR promotes cancer stem cell maintenance in non-small cell lung cancer via activating wnt signaling pathway. Mol Cancer. 2021;20:156.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marquardt S, Solanki M, Spitschak A, Vera J, Pützer BM. Emerging functional markers for cancer stem cell-based therapies: understanding signaling networks for targeting metastasis. Semin Cancer Biol. 2018;53:90–109.

    CAS  PubMed  Google Scholar 

  25. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tu S-M. Prostate cancer stem cells. Clin Genitourin Cancer. 2012;10:69–76.

    PubMed  PubMed Central  Google Scholar 

  27. Keyvani V, Farshchian M, Esmaeili S-A, Yari H, Moghbeli M, Nezhad S-RK, Abbaszadegan MR. Ovarian cancer stem cells and targeted therapy. J Ovarian Res. 2019;12:120.

    PubMed  PubMed Central  Google Scholar 

  28. Walcher L, Kistenmacher A-K, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun A-R, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Read T-A, Fogarty MP, Markant SL, McLendon RE, Wei Z, Ellison DW, Febbo PG, Wechsler-Reya RJ. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell. 2009;15:135–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, Ouafik LH, Figarella-Branger D. A2B5 cells from human glioblastoma have Cancer Stem Cell Properties. Brain Pathol. 2010;20:211–21.

    PubMed  Google Scholar 

  31. An SM, Ding Q, Zhang J, Xie J, Li L. Targeting stem cell signaling pathways for drug discovery: advances in the notch and wnt pathways. Sci China Life Sci. 2014;57:575–80.

    CAS  PubMed  Google Scholar 

  32. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. Targeting notch, hedgehog, and wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. de Sousa E, Melo F, Vermeulen L. Wnt Signal cancer stem cell biology. Cancers (Basel). 2016;8:60.

    Google Scholar 

  34. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, Gulotta G, Dieli F, De Maria R, Stassi G. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14:342–56.

    CAS  PubMed  Google Scholar 

  35. Wang R, Sun Q, Wang P, Liu M, Xiong S, Luo J, Huang H, Du Q, Geller DA, Cheng B. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget. 2016;7:5754–68.

    PubMed  Google Scholar 

  36. Matsui WH. Cancer stem cell signaling pathways. Med (Baltim). 2016;95:8-S19.

    Google Scholar 

  37. Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, Pferdekamper A, Steffy A, Cheng J, Kowal C, Phung V, Guo G, Wang Y, Graham MP, Flynn S, Brenner JC, Li C, Villarroel MC, Schultz PG, Wu X, McNamara P, Sellers WR, Petruzzelli L, Boral AL, Seidel HM, McLaughlin ME, Che J, Carey TE, Vanasse G, Harris JL. Targeting wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A. 2013;110:20224–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, Manoharan V, Ong EHQ, Sangthongpitag K, Hill J, Petretto E, Keller TH, Lee MA, Matter A, Virshup DM. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene. 2016;35:2197–207.

    CAS  PubMed  Google Scholar 

  39. Ko AH, Chiorean EG, Kwak EL, Lenz H-J, Nadler PI, Wood DL, Fujimori M, Inada T, Kouji H, McWilliams RR. Final results of a phase ib dose-escalation study of PRI-724, a CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with advanced pancreatic adenocarcinoma (APC) as second-line therapy after FOLFIRINOX or FOLFOX. J Clin Oncol. 2016;34:e15721.

    Google Scholar 

  40. Krop I, Demuth T, Guthrie T, Wen PY, Mason WP, Chinnaiyan P, Butowski N, Groves MD, Kesari S, Freedman SJ, Blackman S, Watters J, Loboda A, Podtelezhnikov A, Lunceford J, Chen C, Giannotti M, Hing J, Beckman R, LoRusso P. Phase I pharmacologic and pharmacodynamic study of the Gamma secretase (notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J Clin Oncol. 2012;30:2307–13.

    CAS  PubMed  Google Scholar 

  41. Pant S, Jones SF, Kurkjian CD, Infante JR, Moore KN, Burris HA, McMeekin DS, Benhadji KA, Patel BKR, Frenzel MJ, Kursar JD, Zamek-Gliszczynski MJ, Yuen ESM, Chan EM, Bendell JC. A first-in-human phase I study of the oral notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer. 2016;56:1–9.

    CAS  PubMed  Google Scholar 

  42. Tolcher AW, Messersmith WA, Mikulski SM, Papadopoulos KP, Kwak EL, Gibbon DG, Patnaik A, Falchook GS, Dasari A, Shapiro GI, Boylan JF, Xu ZX, Wang K, Koehler A, Song J, Middleton SA, Deutsch J, DeMario M, Kurzrock R, Wheler JJ. Phase I study of RO4929097, a Gamma secretase inhibitor of Notch Signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol. 2012;30:2348–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Morgan KM, Fischer BS, Lee FY, Shah JJ, Bertino JR, Rosenfeld J, Singh A, Khiabanian H, Pine SR. Gamma Secretase Inhibition by BMS-906024 enhances efficacy of paclitaxel in lung adenocarcinoma. Mol Cancer Ther. 2017;16:2759–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kummar S, O’Sullivan Coyne G, Do KT, Turkbey B, Meltzer PS, Polley E, Choyke PL, Meehan R, Vilimas R, Horneffer Y, Juwara L, Lih A, Choudhary A, Mitchell SA, Helman LJ, Doroshow JH, Chen AP. Clinical activity of the γ-Secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). J Clin Oncol. 2017;35:1561–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gutzmer R, Solomon JA. Hedgehog pathway inhibition for the treatment of basal cell carcinoma. Target Oncol. 2019;14:253–67.

    PubMed  Google Scholar 

  46. AlMuraikhi N, Almasoud N, Binhamdan S, Younis G, Ali D, Manikandan M, Vishnubalaji R, Atteya M, Siyal A, Alfayez M, Aldahmash A, Kassem M. Alajez NM. Hedgehog signaling inhibition by smoothened antagonist BMS-833923 reduces osteoblast differentiation and ectopic bone formation of human skeletal (Mesenchymal) stem cells. Stem Cells Int. 2019; 2019: 3435901.

  47. Bendell J, Andre V, Ho A, Kudchadkar R, Migden M, Infante J, Tiu RV, Pitou C, Tucker T, Brail L, Von Hoff D. Phase I study of LY2940680, a smo antagonist, in patients with advanced cancer including treatment-naïve and previously treated basal cell carcinoma. Clin Cancer Res. 2018;24:2082–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69:7507–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Versini A, Colombeau L, Hienzsch A, Gaillet C, Retailleau P, Debieu S, Müller S, Cañeque T, Rodriguez R. Salinomycin derivatives kill breast cancer stem cells by lysosomal Iron targeting. Chemistry. 2020;26:7416–24.

    CAS  PubMed  Google Scholar 

  50. Cuyàs E, Martin-Castillo B, Corominas-Faja B, Massaguer A, Bosch-Barrera J, Menendez JA. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties. Cell Cycle. 2015;14:3527–32.

    PubMed  PubMed Central  Google Scholar 

  51. Darini CY, Martin P, Azoulay S, Drici MD, Hofman P, Obba S, Dani C, Ladoux A. Targeting cancer stem cells expressing an embryonic signature with anti-proteases to decrease their tumor potential. Cell Death Dis. 2013;4:e706.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagano O, Okazaki S, Saya H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene. 2013;32:5191–8.

    CAS  PubMed  Google Scholar 

  53. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, De Cola A, Scavo E, Carollo R, D’Agostino D, Forlì F, D’Aguanno S, Todaro M, Stassi G, Di Ilio C, De Laurenzi V, Urbani A. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5:e1336.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang VMY, Ferreira RMM, Almagro J, Evan T, Legrave N, Zaw Thin M, Frith D, Carvalho J, Barry DJ, Snijders AP, Herbert E, Nye EL, MacRae JI, Behrens A. CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth. Nat Cell Biol. 2019;21:1425–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li D, Fu Z, Chen R, Zhao X, Zhou Y, Zeng B, Yu M, Zhou Q, Lin Q, Gao W, Ye H, Zhou J, Li Z, Liu Y, Chen R. Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy. Oncotarget. 2015;6:31151–63.

    PubMed  PubMed Central  Google Scholar 

  56. Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, Yamamoto Y, Ogata M, Katsuyama Y, Sadahiro H, Suzuki M, Owada Y. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells. PLoS ONE. 2016;11:e0147717.

    PubMed  PubMed Central  Google Scholar 

  57. Wang Q, Liu F, Wang L, Xie C, Wu P, Du S, Zhou S, Sun Z, Liu Q, Yu L, Liu B, Li R. Enhanced and prolonged antitumor effect of salinomycin-loaded gelatinase-responsive nanoparticles via targeted drug delivery and inhibition of cervical cancer stem cells. Int Nanomedicine. 2020;15:1283–95.

    CAS  Google Scholar 

  58. Zhao Y, Zhao W, Lim YC, Liu T. Salinomycin-loaded gold nanoparticles for treating Cancer Stem cells by Ferroptosis-Induced cell death. Mol Pharm. 2019;16:2532–9.

    CAS  PubMed  Google Scholar 

  59. Gao J, Liu J, Xie F, Lu Y, Yin C, Shen X. Co-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by PLGA/TPGS nanoparticles. Int Nanomedicine. 2019;14:9199–216.

    CAS  Google Scholar 

  60. Kuo Y-C, Wang L-J. Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: colocalization of ALDH and CD44. Mater Sci Eng C Mater Biol Appl. 2019;102:362–72.

    CAS  PubMed  Google Scholar 

  61. Das S, Mukherjee P, Chatterjee R, Jamal Z, Chatterji U. Enhancing chemosensitivity of breast Cancer stem cells by downregulating SOX2 and ABCG2 using wedelolactone-encapsulated nanoparticles. Mol Cancer Ther. 2019;18:680–92.

    CAS  PubMed  Google Scholar 

  62. Ibiyeye KM, Zuki ABZ. Cockle Shell-Derived Aragonite CaCO(3) nanoparticles for co-delivery of doxorubicin and thymoquinone eliminates cancer stem cells. Int J Mol Sci. 2020;21:1900.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsai P-H, Wang M-L, Chang J-H, Yarmishyn AA, Nhi Nguyen PN, Chen W, Chien Y, Huo T-I, Mou C-Y, Chiou S-H. Dual delivery of HNF4α and cisplatin by mesoporous silica nanoparticles inhibits cancer pluripotency and tumorigenicity in hepatoma-derived CD133-expressing stem cells. ACS Appl Mater Interfaces. 2019;11:19808–18.

    CAS  PubMed  Google Scholar 

  64. Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P, Shu D. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol Ther. 2019;27:1252–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ke X, Yang C, Cheng W, Yang YY. Delivery of NF-κB shRNA using carbamate-mannose modified PEI for eliminating cancer stem cells. Nanomedicine. 2018;14:405–14.

    CAS  PubMed  Google Scholar 

  66. Tian J, Gu Y, Li Y, Liu T. CD271 antibody-functionalized HGNs for targeted photothermal therapy of osteosarcoma stem cells. Nanotechnology. 2020;31:305707.

    CAS  PubMed  Google Scholar 

  67. Tan T, Wang H, Cao H, Zeng L, Wang Y, Wang Z, Wang J, Li J, Wang S, Zhang Z, Li Y. Deep Tumor-Penetrated Nanocages improve accessibility to Cancer Stem cells for photothermal-chemotherapy of breast Cancer metastasis. Adv Sci(Weinh). 2018;5:1801012.

    PubMed  Google Scholar 

  68. Fernandes S, Fernandez T, Metze S, Balakrishnan PB, Mai BT, Conteh J, De Mei C, Turdo A, Di Franco S, Stassi G, Todaro M, Pellegrino T. Magnetic nanoparticle-based hyperthermia mediates drug delivery and impairs the tumorigenic capacity of quiescent colorectal cancer stem cells. ACS Appl Mater Interfaces. 2021;13:15959–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG, Woodward WA, Krishnan S, Chang JC, Rosen JM. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med. 2010;2:55ra79.

    PubMed  PubMed Central  Google Scholar 

  70. Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17:657–74.

    PubMed  Google Scholar 

  71. Crous A, Abrahamse H. Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int J Mol Sci. 2020;21:3742.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang B, Liu H, Yang H, Chen W, Wu J, Feng X, Tong R, Yu H, Chen Y, Lv Z, Sun W, He B, Wu J, Yu G, Mao Z, Zheng S. Combinatorial photochemotherapy on liver cancer stem cells with organoplatinum(ii) metallacage-based nanoparticles. J Mater Chem B. 2019;7:6476–87.

    CAS  PubMed  Google Scholar 

  73. Avancini G, Guerrini A, Ferroni C, Tedesco D, Ballestri M, Columbaro M, Menilli L, Reddi E, Costa R, Leanza L, Varchi G, Moret F. Keratin nanoparticles and photodynamic therapy enhance the anticancer stem cells activity of salinomycin. Mater Sci Eng C Mater Biol Appl. 2021;122:111899.

    CAS  PubMed  Google Scholar 

  74. Lu S-L, Wang Y-H, Liu G-F, Wang L, Li Y, Guo Z-Y. Graphene Oxide nanoparticle-loaded Ginsenoside Rg3 improves photodynamic therapy in inhibiting malignant progression and stemness of Osteosarcoma. Front Mol Biosci. 2021;8:663089.

    PubMed  PubMed Central  Google Scholar 

  75. Shamsian A, Sepand MR, Javaheri Kachousangi M, Dara T, Ostad SN, Atyabi F, Ghahremani MH. Targeting tumorigenicity of breast cancer stem cells using SAHA/Wnt-b catenin antagonist loaded onto protein corona of gold nanoparticles. Int J Nanomedicine. 2020;15:4063–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang Y, Yang Q-W, Yang Q, Zhou T, Shi M-F, Sun C-X, Gao X-X, Cheng Y-Q, Cui X-G, Sun Y-H. Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the wnt signaling pathway. Int J Nanomedicine. 2017;12:2569–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res. 2010;3:11.

    PubMed  PubMed Central  Google Scholar 

  78. Chandra Boinpelly V, Verma RK, Srivastav S, Srivastava RK. Shankar S. α-Mangostin-encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting notch pathway. J Cell Mol Med. 2020;24:11343–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang Y, Zhou B, Luo H, Mao J, Huang Y, Zhang K, Mei C, Yan Y, Jin H, Gao J, Su Z, Pang P, Li D, Shan H. ZnAs@SiO(2) nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics. 2019;9:4391–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaushik NK, Kaushik N, Yoo KC, Uddin N, Kim JS, Lee SJ, Choi EH. Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials. 2016;87:118–30.

    CAS  PubMed  Google Scholar 

  81. Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release. 2017;266:166–86.

    CAS  PubMed  Google Scholar 

  82. Cho J-H, Kim AR, Kim S-H, Lee S-J, Chung H, Yoon M-Y. Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater. 2017;47:182–92.

    CAS  PubMed  Google Scholar 

  83. Ni M, Xiong M, Zhang X, Cai G, Chen H, Zeng Q, Yu Z. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133 + osteosarcoma cancer stem cells. Int J Nanomedicine. 2015;10:2537–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zöller M. CD44, Hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol. 2015;6:235.

    PubMed  PubMed Central  Google Scholar 

  85. Su Z, Liu D, Chen L, Zhang J, Ru L, Chen Z, Gao Z, Wang X. CD44-Targeted magnetic nanoparticles kill Head and Neck squamous cell carcinoma stem cells in an alternating magnetic field. Int J Nanomedicine. 2019;14:7549–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li Y, Shi S, Ming Y, Wang L, Li C, Luo M, Li Z, Li B, Chen J. Specific cancer stem cell-therapy by albumin nanoparticles functionalized with CD44-mediated targeting. J Nanobiotechnol. 2018;16:99.

    CAS  Google Scholar 

  87. Chen H, Lin J, Shan Y, Zhengmao L. The promotion of nanoparticle delivery to two populations of gastric cancer stem cells by CD133 and CD44 antibodies. Biomed Pharmacother. 2019;115:108857.

    CAS  PubMed  Google Scholar 

  88. Zeng Y-b, Yu Z-c, He Y-n, Zhang T, Du L-b, Dong Y-m, Chen H-w, Zhang Y-y, Wang W-q. Erratum: Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20 + melanoma stem cells. Acta Pharmacol Sin. 2018;39:330.

    Google Scholar 

  89. Kim H, Jang H, Cho H, Choi J, Hwang KY, Choi Y, Kim SH, Yang Y Y. Recent advances in exosome-based drug delivery for cancer therapy. Cancers. 2021;13:4435.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev. 2013;251:125–42.

    PubMed  PubMed Central  Google Scholar 

  91. Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD. Fibronectin on the Surface of Myeloma Cell-derived Exosomes mediates exosome-cell interactions. J Biol Chem. 2016;291:1652–63.

    CAS  PubMed  Google Scholar 

  92. Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014; 3.

  93. Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, Hakeem A, Hu J, Gan L, Santos HA, Yang X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 2019;10:3838.

    PubMed  PubMed Central  Google Scholar 

  94. Dianat-Moghadam H, Mahari A, Salahlou R, Khalili M, Azizi M, Sadeghzadeh H. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy. Stem Cell Res Ther. 2022;13:150.

    PubMed  PubMed Central  Google Scholar 

  95. Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther. 2021;17:20–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M.  Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release. 2018;288:62–83.

    CAS  PubMed  Google Scholar 

  97. Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-enhanced cancer immunotherapy: immunology encounters nanotechnology. Cells. 2020;9:2102.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hassani Najafabadi A, Zhang J, Aikins ME, Najaf Abadi ZI, Liao F, Qin Y, Okeke EB, Scheetz LM, Nam J, Xu Y, Adams D, Lester P, Hetrick T, Schwendeman A, Wicha MS, Chang AE, Li Q, Moon JJ. Cancer Immunotherapy via targeting cancer stem cells using vaccine nanodiscs. Nano lett. 2020;20:7783–92.

    CAS  PubMed  Google Scholar 

  99. Li C, Qiu Q, Gao X, Yan X, Fan C, Luo X, Liu X, Wang S, Lai X, Song Y, Deng Y. Sialic acid conjugate-modified liposomal platform modulates immunosuppressive tumor microenvironment in multiple ways for improved immune checkpoint blockade therapy. J Control Release. 2021;337:393–406.

    CAS  PubMed  Google Scholar 

  100. Lang T, Liu Y, Zheng Z, Ran W, Zhai Y, Yin Q, Zhang P, Li Y. Cocktail Strategy based on Spatio-Temporally controlled Nano device improves therapy of breast Cancer. Adv Mater. 2019;31:1806202.

    Google Scholar 

  101. Shen YA, Li WH, Chen PH, He CL, Chang YH, Chuang CM. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol(®)-resistant ovarian cancer. Am J Transl Res. 2015;7:841–55.

    PubMed  PubMed Central  Google Scholar 

  102. Yang Fr, Zhao Yf, Hu Xw, Liu Zk, Yu Xd, Li Cy, Li Xr, Li Hj. Nano-realgar suppresses lung cancer stem cell growth by repressing metabolic reprogramming. Gene. 2021;788:145666.

    CAS  PubMed  Google Scholar 

  103. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No.81803029) and the Science and Technology Foundation of Yuzhong District, Chongqing (No.20210179).

Author information

Authors and Affiliations

Authors

Contributions

Lin Li, Rui Ni and Lin Chen contributed to the idea for this review article. The literature search and analysis were performed by Dan Zheng. Further evidences collection, analysis and arrangement were accomplished by Lin Li and Rui Ni. The first draft of the manuscript was written by Lin Li and Rui Ni. Then, the manuscript was critically revised by Lin Chen (Corresponding Author). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lin Chen.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lin Li and Rui Ni contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ni, R., Zheng, D. et al. Eradicating the tumor “seeds”: nanomedicines-based therapies against cancer stem cells. DARU J Pharm Sci 31, 83–94 (2023). https://doi.org/10.1007/s40199-023-00456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00456-0

Keywords

Navigation