Skip to main content

Advertisement

Log in

Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Berberine (BBR) broadly found in medicinal plants has a major application in pharmacological therapy as an anticancer drug. Clinical applications of this promising natural drug are limited due to its poor water solubility and low bioavailability.

Objective

In this study, for the first time, we synthesized core-shell BBR-loaded PLA nanoparticles (NPBs) by using coaxial electrospray (CES) to solve the poor bioavailability of BBR.

Methods

Three-factor (feeding rate, polymeric solution concentration and applied voltage), three-level, Box-Behnken design was used for optimization of the size and particle size distribution of the prepared NPBs.

Results

Based on the results of response surface methodology, the NPBs with the mean size of 265 nm and particle size distribution of 43 nm were synthesized. A TEM image was used to well illustrate the core-shell structure of the NPBs. Encapsulation efficiency and BBR loading capacity for the optimized NPBs were determined at about 81% and 7.5%, respectively. Release of NPBs was examined at pH 7.4 and 5.8. NPBs had a slower release profile than free BBR in both pH values, and the rate of BBR release was more and faster in acidic pH than in physiological one. Effects of the NPBs on the drug release were confirmed by data fitting with six kinetic models. NPBs showed an increased cytotoxic efficacy against HCT116 cells (IC50 = 56 μM), while NIH3T3 cells, non-neoplastic fibroblast cells, (IC50 > 150 μM) were less affected by NPBs. Flow cytometry demonstrated that the cellular uptake of NPBs were higher than BBR at different concentrations.

Conclusions

A new approach was developed in this study to prepare NPBs using the CES process for improving the efficiency and controlled BBR release. It is concluded that nano-scaled NPBs prepared by CES can improve toxicity and chemotherapeutic properties of BBR against cancerous cells. We believe that these NPBs can exhibit further potential in cancer drug delivery systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Momtaz S, Lall N, Hussein A, Ostad SN, Abdollahi M. Investigation of the possible biological activities of a poisonous south African plant; Hyaenanche globosa (Euphorbiaceae). Pharmacogn Mag. 2010;6(21):34.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Rabbani GH, Butler T, Knight J, Sanyal SC, Alam K. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J Infect Dis. 1987;155(5):979–84.

    PubMed  CAS  Google Scholar 

  3. Jiang H, Wang X, Huang L, Luo Z, Su T, Ding K, et al. Benzenediol-berberine hybrids: multifunctional agents for Alzheimer's disease. Bioorg Med Chem. 2011;19(23):7228–35.

    PubMed  CAS  Google Scholar 

  4. Iwasa K, Kim HS, Wataya Y, Lee DU. Antimalarial activity and structure-activity relationships of protoberberine alkaloids. Eur J Med Chem. 1998;13:65–9.

    Google Scholar 

  5. Park KD, Lee JH, Kim SH, Kang TH, Moon JS, Kim SU. Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorg Med Chem. 2006;16(15):3913–6.

    CAS  Google Scholar 

  6. Singh IP, Mahajan S. Berberine and its derivatives: a patent review (2009 - 2012). Expert Opin Ther Pat. 2013;23(2):215–31.

    PubMed  CAS  Google Scholar 

  7. Vennerstrom JL, Lovelace JK, Waits VB, Hanson WL, Klayman DL. Berberine derivatives as antileishmanial drugs. Antimicrob Agents Chemother. 1990;34(5):918–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Lo CY, Hsu LC, Chen MS, Lin YJ, Chen LG, Kuo CD, et al. Synthesis and anticancer activity of a novel series of 9-O-substituted berberine derivatives: a lipophilic substitute role. Bioorg Med Chem. 2013;23(1):305–9.

    CAS  Google Scholar 

  9. Yu F, Ao M, Zheng X, Li N, Xia J, Li Y, et al. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv. 2017;24(1):825–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Iqbal J, Ejaz SA, Khan I, Ausekle E, Miliutina M, Langer P. Exploration of quinolone and quinoline derivatives as potential anticancer agents. DARU J Pharm Sci. 2019:1–14.

  11. Ahmadi Tehrani A, Omranpoor MM, Vatanara A, Seyedabadi M, Ramezani V. Formation of nanosuspensions in bottom-up approach: theories and optimization. DARU J Pharm Sci. 2019;27(1):451–73.

    Google Scholar 

  12. Pund S, Borade G, Rasve G. Improvement of anti-inflammatory and anti-angiogenic activity of berberine by novel rapid dissolving nanoemulsifying technique. Phytomedicine. 2014;21(3):307–14.

    PubMed  CAS  Google Scholar 

  13. Tan W, Li Y, Chen M, Wang Y. Berberine hydrochloride: anticancer activity and nanoparticulate delivery system. Int J Nanomedicine. 2011;6:1773–7.

    PubMed  PubMed Central  Google Scholar 

  14. Sahibzada MUK, Sadiq A, Faidah HS, Khurram M, Amin MU, Haseeb A, et al. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des Devel Ther. 2018;12:303.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang Y, Wen B, Yu H, Ding D, Zhang J, Zhang Y, et al. Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J Biomed Nanotechnol. 2018;14(8):1486–95.

    PubMed  CAS  Google Scholar 

  16. Yi C, Zhong H, Tong S, Cao X, Firempong CK, Liu H, et al. Enhanced oral bioavailability of a sterol-loaded microemulsion formulation of Flammulina velutipes, a potential antitumor drug. Int J Nanomedicine. 2012;7:5067.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhu Y, Peng W, Zhang J, Wang M, Firempong CK, Feng C, et al. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: preparation, in vitro and in vivo evaluation. J Funct Foods. 2014;8:358–66.

    CAS  Google Scholar 

  18. Zhu Y, Wang M, Zhang Y, Zeng J, Omari-Siaw E, Yu J, et al. In vitro release and bioavailability of silybin from micelle-templated porous calcium phosphate microparticles. AAPS PharmSciTech. 2016;17(5):1232–9.

    PubMed  CAS  Google Scholar 

  19. Taghipour YD, Bahramsoltani R, Marques AM, Naseri R, Rahimi R, Haratipour P, et al. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. DARU J Pharm Sci. 2018;1.

  20. Koupaei SM, Gabris M, Hadi BJ, Baradaran R, Aziz M, Karim K, et al. Adsorption and in vitro release study of curcumin form polyethyleneglycol functionalized multi walled carbon nanotube: kinetic and isotherm study. DARU J Pharm Sci. 2019;27(1):9–20.

    Google Scholar 

  21. Hasani M, Sani NA, Khodabakhshi B, Arabi MS, Mohammadi S, Yazdani Y. Encapsulation of Leflunomide (LFD) in a novel niosomal formulation facilitated its delivery to THP-1 monocytic cells and enhanced aryl hydrocarbon receptor (AhR) nuclear translocation and activation. DARU J Pharm Sci. 2019:1–10.

  22. Horter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46(1–3):75–87.

    PubMed  CAS  Google Scholar 

  23. Salarpour S, Forootanfar H, Pournamdari M, Ahmadi-Zeidabadi M, Esmaeeli M, Pardakhty A. Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. DARU J Pharm Sci. 2019:1–7.

  24. Kumari P, Luqman S, Meena A. Application of the combinatorial approaches of medicinal and aromatic plants with nanotechnology and its impacts on healthcare. DARU J Pharm Sci. 2019:1–15.

  25. Al Samad A, Bakkour Y, Fanny C, El Omar F, Coudane J, Nottelet BJPC. From nanospheres to micelles: simple control of PCL-g-PEG copolymers’ amphiphilicity through thiol–yne photografting. Polym Chem. 2015;6(28):5093–102.

    Google Scholar 

  26. Chopra D, Ray L, Dwivedi A, Tiwari SK, Singh J, Singh KP, et al. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line. Biomaterials. 2016;84:25–41.

    PubMed  CAS  Google Scholar 

  27. Zhai SY, Ma YH, Chen YY, Li D, Cao J, Liu YJ, et al. Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novelpH-sensitive drug carrier. Polym Chem. 2014;5:1285–97.

    CAS  Google Scholar 

  28. Zhao X, Chen S, Lin Z, Du C. Reactive electrospinning of composite nanofibers of carboxymethyl chitosan cross-linked by alginate dialdehyde with the aid of polyethylene oxide. Carbohydr Polym. 2016;148:98–106.

    PubMed  CAS  Google Scholar 

  29. Yang JM, Yang JH, Tsou SC, Ding CH, Hsu CC, Yang KC, et al. Cell proliferation on PVA/sodium alginate and PVA/poly (γ-glutamic acid) electrospun fiber. Mater Sci Eng C Mater Biol Appl. 2016;66:170–7.

    PubMed  CAS  Google Scholar 

  30. Gómez-Mascaraque LG, Sanchez G, López-Rubio A. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds. Carbohydr Polym. 2016;150:121–30.

    PubMed  Google Scholar 

  31. Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.

    PubMed  CAS  Google Scholar 

  32. Yang Y-Y, Wan J-P, Chung T-S, Pallathadka PK, Ng S, Heller J. POE–PEG–POE triblock copolymeric microspheres containing protein: I. Preparation and characterization J Control Release. 2001;75(1–2):115–28.

    PubMed  CAS  Google Scholar 

  33. Cao L, Luo J, Tu K, Wang L-Q, Jiang HJC, Biointerfaces SB. Generation of nano-sized core–shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf B: Biointerfaces. 2014;115:212–8.

    PubMed  CAS  Google Scholar 

  34. Ito K, Saito A, Fujie T, Nishiwaki K, Miyazaki H, Kinoshita M, et al. Sustainable antimicrobial effect of silver sulfadiazine-loaded nanosheets on infection in a mouse model of partial-thickness burn injury. Acta Biomater. 2015;24:87–95.

    PubMed  CAS  Google Scholar 

  35. Wu X, Ma Y, Zhang G, Chu Y, Du J, Zhang Y, et al. Thermally stable, biocompatible, and flexible organic field-effect transistors and their application in temperature sensing arrays for artificial skin. Adv Mater. 2015;25(14):2138–46.

    CAS  Google Scholar 

  36. Shao W, He J, Han Q, Sang F, Wang Q, Chen L, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;67:599–610.

    PubMed  CAS  Google Scholar 

  37. Gomez-Estaca J, Balaguer M, Gavara R, Hernandez-Munoz P. Formation of zein nanoparticles by electrohydrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll. 2012;28(1):82–91.

    CAS  Google Scholar 

  38. Quintanilla-Carvajal MX, Camacho-Díaz BH, Meraz-Torres LS, Chanona-Pérez JJ, Alamilla-Beltrán L, Jimenéz-Aparicio A, et al. Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev. 2010;2(1):39–50.

    Google Scholar 

  39. Barrero A, Ganan-Calvo A, Davila J, Palacio A, Gomez-Gonzalez EJPRE. Low and high Reynolds number flows inside Taylor cones. Phys Rev E. 1998;58(6):7309.

    CAS  Google Scholar 

  40. Gañán-Calvo AM. The surface charge in electrospraying: its nature and its universal scaling laws. J Aerosol Sci. 1999;30(7):863–72.

    Google Scholar 

  41. Lopez-Herrera J, Barrero A, Lopez A, Loscertales I, Marquez M. Coaxial jets generated from electrified Taylor cones. Scaling laws J Aerosol Sci. 2003;34(5):535–52.

    CAS  Google Scholar 

  42. Zhang L, Huang J, Si T, Xu RX. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices. 2012;9(6):595–612.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Chakraborty S, Liao I-C, Adler A, Leong KW. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev. 2009;61(12):1043–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Faghihi H, Najafabadi AR, Vatanara A. Optimization and characterization of spray-dried IgG formulations: a design of experiment approach. DARU J Pharm Sci. 2017;25(1):22.

    Google Scholar 

  45. Mai Z, Chen J, He T, Hu Y, Dong X, Zhang H, et al. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Adv. 2017;7(3):1724–34.

    CAS  Google Scholar 

  46. Rezaei G, Daghighi SM, Raoufi M, Esfandyari-Manesh M, Rahimifard M, Mobarakeh VI, et al. Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery: an immunological link. J Colloid Interface Sci. 2019;556:476–91.

    PubMed  CAS  Google Scholar 

  47. Hartman R, Brunner D, Camelot D, Marijnissen J, Scarlett B. Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J Aerosol Sci. 2000;31(1):65–95.

    CAS  Google Scholar 

  48. Zhou H-Y, Cao P-P, Zhao J, Wang Z-Y, Li J-B, Zhang F-L. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres. Front Mater Sci. 2014;8(4):373–82.

    Google Scholar 

  49. Khoee S, Yousefalizadeh G, Kavand A. Preparation of dual-targeted redox-responsive nanogels based on pegylated sorbitan for targeted and antitumor drug delivery. Eur Polym J. 2017;95:448–61.

    CAS  Google Scholar 

  50. Serafim TL, Oliveira PJ, Sardao VA, Perkins E, Parke D, Holy J. Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line. Cancer Chemother Pharmacol. 2008;61(6):1007–18.

    PubMed  CAS  Google Scholar 

  51. Beidokhti HRN, Ghaffarzadegan R, Mirzakhanlouei S, Ghazizadeh L. Dorkoosh. Preparation, characterization, and optimization of folic acid-chitosan-methotrexate core-shell nanoparticles by box-behnken design for tumor-targeted drug delivery. AAPS PharmSciTech. 2017;18(1):115–29.

    Google Scholar 

  52. Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: An overview 2008;66(3–4):197–219.

  53. Esmaili Z, Bayrami S, Dorkoosh FA, Akbari Javar H, Seyedjafari E, Zargarian SS, et al. Development and characterization of electrosprayed nanoparticles for encapsulation of Curcumin. J Biomed Mater Res A. 2018;106(1):285–92.

    PubMed  CAS  Google Scholar 

  54. Rezvanpour A, Attia AB, Wang C-HJI. Enhancement of particle collection efficiency in electrohydrodynamic atomization process for pharmaceutical particle fabrication. Ind Eng Chem Res. 2010;49(24):12620–31.

    CAS  Google Scholar 

  55. Enayati M, Ahmad Z, Stride E, Edirisinghe M. Size mapping of electric field-assisted production of polycaprolactone particles. J R Soc Interface. 2010;7(4):393–402.

    Google Scholar 

  56. Ijsebaert JC, Geerse KB, Marijnissen JC, Lammers J-WJ, Zanen P. Electro-hydrodynamic atomization of drug solutions for inhalation purposes. J Appl Physiol. 2001;91(6):2735–41.

    PubMed  CAS  Google Scholar 

  57. Karimi Zarchi AA, Abbasi S, Faramarzi MA, Gilani K, Ghazi-Khansari M, Amani A. Development and optimization of N-Acetylcysteine-loaded poly (lactic-co-glycolic acid) nanoparticles by electrospray. Int J Biol Macromol. 2015;72:764–70.

    PubMed  CAS  Google Scholar 

  58. Battu SK, Repka MA, Maddineni S, Chittiboyina AG, Avery MA, Majumdar S. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech. 2010;11(3):1466–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Wang L, Li H, Wang S, Liu R, Wu Z, Wang C, et al. Enhancing the antitumor activity of Berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech. 2014;15(4):834–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. ZiaSarabi P, Hesari A, Bagheri M, Baazm M, Ghasemi F. Evaluation of cytotoxicity effects of combination Nano-Curcumin and berberine in breast cancer cell line. IJT. 2018;12(4):47–50.

    Google Scholar 

Download references

Acknowledgments

Authors wish to thanks Dr. Saeideh Momtaz for her helpful advice and support in cell cytotoxicity tests. This paper is a result of the first author Ph.D. project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Khoee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffarzadegan, R., Khoee, S. & Rezazadeh, S. Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. DARU J Pharm Sci 28, 237–252 (2020). https://doi.org/10.1007/s40199-020-00335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-020-00335-y

Keywords

Navigation