Skip to main content

Advertisement

Log in

Targeting kidneys by superparamagnetic allopurinol loaded chitosan coated nanoparticles for the treatment of hyperuricemic nephrolithiasis

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Purpose

The major short coming of conventional therapy system is that they can’t deliver the therapeutics specifically to a site within the body without producing nonspecific toxicity. Present research aimed at developing kidney targeted allopurinol (AP) loaded chitosan coated magnetic nanoparticles (A-MNPs) for the management of hyperuricemic nephropathy manifested in the form of nephrolithiasis.

Methods

The work includes preparation of magnetic nanoparticles by chemical co-precipitation method and evaluation of the prepared batches for particle size analysis, Transmission electron microscopy, entrapment efficiency, in-vitro release study etc. Further, FTIR spectroscopy, X-ray diffraction, Differential Scanning Calorimetry, Vibrational sample magnetometer (VSM) and in-vivo animal studies were also performed.

Results

VSM analysis demonstrates that the prepared nanoparticles exhibit superparamagnetic magnetic behaviour which was retained even after coating by chitosan. In-vivo studies of A-MNPs showed 19.07-fold increase in kidney uptake of AP as compared to serum post 2 h of administration in mice whereas no drug was detected in kidney and serum post 2 h administration of pure drug (free-form) indicating successful targeting to kidney as well as sustained release of AP from the formulated A-MNPs. The significant (p < 0.01) effectiveness of A-MNPs in management of hyperuricemic nephrolithiasis was observed through estimating pH and uric acid levels in urine and serum samples of mice. These findings were also confirmed by histological examination of isolated kidney samples.

Conclusion

Present investigation signifies that a simple external magnetic field is enough for targeting allopurinol to kidneys by formulating A-MNPs which further offers an effective approach for management of hyperuricemic nephrolithiasis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A-MNPs :

Allopurinol loaded chitosan coated magnetic nanoparticles

AP :

Allopurinol

C-MNPs :

Chitosan coated magnetic nanoparticles (without drug)

DSC:

Differential Scanning Calorimetry

FTIR:

Fourier Transform Infrared

HPLC:

High Performance Liquid Chromatography

MNPs:

Magnetic nanoparticles (without drug and polymer coating)

MWCO:

Molecular weight cut off

P-AP-CH:

Physical mixture of AP and chitosan polymer

PO:

Potassium oxonate

SUA:

Serum uric acid

TEM:

Transmission Electron Microscopy

UA:

Uric acid

UUA:

Urine uric acid

VSM:

Vibrating sample magnetometer

XO:

Xanthine oxidase

XRD:

X-Ray Diffraction

References

  1. Zhou P, Sun X, Zhang Z. Kidney targeted drug delivery system. Acta Pharm Sin B. 2014;4:37–42.

    Article  Google Scholar 

  2. Klinenberg JR, Kippen I, Bluestone R. Hyperuricemic nephropathy: pathologic features and factors influencing urate deposition. Nephron. 1975;14:88–98.

    Article  CAS  Google Scholar 

  3. Abou-Elela A. Epidemiology, pathophysiology, and management of uric acid urolithiasis: a narrative review. J Adv Res. 2017;8:513–27.

    Article  CAS  Google Scholar 

  4. Ngo TC, Assimos DG. Uric acid nephrolithiasis: recent progress and future directions. Rev Urol. 2007;9(1):17.

    PubMed  PubMed Central  Google Scholar 

  5. Zuckerman JE, Davis ME. Targeting therapeutics to the glomerulus with nanoparticles. Adv Chronic Kidney Dis. 2013;20:500–7.

    Article  Google Scholar 

  6. Nosrati H, Salehiabar M, Attari E, Davaran S, Danafar H, Manjili HK. Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl Organometal Chem. 2017;32:e4069.

    Article  Google Scholar 

  7. Nosrati H, Salehiabar M, Davaran S, Ramazani A, Manjili HK, Danafar H. New advances strategies for surface functionalization of iron oxide magnetic nanoparticles (IONPs). Res Chem Intermed. 2017;43:7423–42.

    Article  CAS  Google Scholar 

  8. Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29:487–96.

    Article  CAS  Google Scholar 

  9. Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S, Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine. 2010;6:64–9.

    Article  CAS  Google Scholar 

  10. Alimohammadi S, Salehi R, Amini N, Davaran S. Synthesis and physicochemical characterization of biodegradable PLGA-based magnetic nanoparticles containing amoxicilin. Bull Kor Chem Soc. 2012;33:3225–32.

    Article  CAS  Google Scholar 

  11. Qu J, Liu G, Wang Y, Hong R. Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol. 2010;21:461–7.

    Article  CAS  Google Scholar 

  12. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z. Preparation of Fe3O4 magnetic nanoparticles coated withgallic acid for drug delivery. Int J Nanomedicine. 2012;7:5745.

    Article  CAS  Google Scholar 

  13. Bhagav P, Upadhyay H, Chandran S. Brimonidine tartrate–Eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech. 2011;4:1087–101.

    Article  Google Scholar 

  14. Yadav M, Parle M, Sharma N, Dhingra S, Raina N, Jindal DK. Brain targeted oral delivery of doxycycline hydrochloride encapsulated tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice. Drug Delivery. 2017;24(1):1429–40.

    Article  CAS  Google Scholar 

  15. Manjili HK, Ma’mani L, Tavaddod S, Mashhadikhan M, Shafiee A, Naderi-Manesh H. D, L-sulforaphane loaded Fe3O4@ gold core shell nanoparticles: a potential sulforaphane delivery system. PLoS One. 2016;11:e0151344.

    Article  Google Scholar 

  16. Girotra P, Thakur A, Kumar A, Singh SK. Identification of multi-targeted anti-migraine potential of nystatin and development of its brain targeted chitosan nanoformulation. Int J Biol Macromol. 2017;96:687–96.

    Article  CAS  Google Scholar 

  17. Salehiabar M, Nosrati H, Davaran S, Danafar H, Manjili HK. Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res. 2018;68:280–5.

    Article  CAS  Google Scholar 

  18. Kandav G, Bhatt DC, Jindal DK. Formulation and evaluation of allopurinol loaded chitosan nanoparticles. Int J Appl Pharm. 2019;11:49–52.

    Article  Google Scholar 

  19. Nosrati H, Salehiabar M, Davaran S, Danafar H, Manjili HK. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm. 2018;44:886–94.

    Article  CAS  Google Scholar 

  20. Zhang Z, Liao G, Nagai T, Hou S. Mitoxantrone polybutyl cyanoacrylate nanoparticles as an anti-neoplastic targeting drug delivery system. Int J Pharm. 1996;139(1-2):1–8.

    Article  CAS  Google Scholar 

  21. Hou PY, Mi C, He Y, Zhang J, Wang SQ, Yu F, et al. Pallidifloside D from Smilax riparia enhanced allopurinol effects in hyperuricemia mice. Fitoterapia. 2015;105:43–8.

    Article  CAS  Google Scholar 

  22. Meng X, Mao Z, Li X, Zhong D, Li M, Jia Y, et al. Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice. Oncotarget. 2017;8:40305.

    PubMed  PubMed Central  Google Scholar 

  23. Halabe A, Sperling O. Uric acid nephrolithiasis. Miner Electrolyte Metab. 1994;20:424–31.

    CAS  PubMed  Google Scholar 

  24. Sangameshwar, Chandramouli HM, Medikeri SS, Hiremath SG. Evaluation of antihyperuricemic activity of shodhita shilajatu on potassium oxonate induced hyperuricemic rat model. Int J Res Ayurveda Pharm. 2017;8:53–8.

    CAS  Google Scholar 

  25. Zhao Y, Yang X, Lu W, Liao H, Liao F. Uricase based methods for determination of uric acid in serum. Microchim Acta. 2009;164:1–6.

    Article  CAS  Google Scholar 

  26. Tada H, Fujisaki A, Itoh K, Suzuki T. Facile and rapid high-performance liquid chromatography method for simultaneous determination of allopurinol and oxypurinol in human serum. J Clin Pharm Ther. 2003;28:229–34.

    Article  CAS  Google Scholar 

  27. Degroodt JM, Bukanski BW, Srebrnik S. Multiresidue analysis of tetracyclines in kidney by HPLC and photodiode array detection. J Liq Chromatogr Relat Technol. 1993;16:3515–29.

    Article  CAS  Google Scholar 

  28. Nagpal K, Singh SK, Mishra DN. Formulation, optimization, in vivo pharmacokinetic, behavioral and biochemical estimations of minocycline loaded chitosan nanoparticles for enhanced brain uptake. Chem Pharm Bull. 2013;61:258–72.

    Article  CAS  Google Scholar 

  29. Reinders MK, Nijdam LC, van Roon EN, Movig KL, Tim LT, van de Laar MA, et al. A simple method for quantification of allopurinol and oxipurinol in human serum by high-performance liquid chromatography with UV-detection. J Pharm Biomed Anal. 2007;45:312–7.

    Article  CAS  Google Scholar 

  30. Kandav G, Singh SK. Review of Nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018;80:781–9.

    Google Scholar 

  31. Tayal K, Kandav G, Girotra P, Singh SK. Formulation and evaluation of chitosan coated magnetic nanoparticles of amoxicillin trihydrate. Pharm Lett. 2015;7:241–25.

    CAS  Google Scholar 

  32. Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni JK, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47:6–15.

    Article  CAS  Google Scholar 

  33. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  34. Chavan C, Bala P, Pal K, Kale SN. Cross-linked chitosan-dextran sulphate vehicle system for controlled release of ciprofloxacin drug: an ophthalmic application. OpenNano. 2017;2:28–36.

    Article  Google Scholar 

  35. Vikram S, Dhakshnamoorthy M, Vasanthakumari R, Rajamani AR, Rangarajan M, Tsuzuki T. Tuning the magnetic properties of iron oxide nanoparticles by a room-temperature air-atmosphere (RTAA) co-precipitation method. J Nanosci Nanotechnol. 2015;15:3870–8.

    Article  CAS  Google Scholar 

  36. Pham XN, Nguyen TP, Pham TN, Tran TT, Tran TV. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Adv Nat Sci: Nanosci Nanotechnol. 2016;7:045010.

    Google Scholar 

Download references

Acknowledgments

Authors express their deepest gratitude to Late Dr. Shailendra Kumar Singh, Professor, Department of Pharmaceutical Sciences, G.J.U S&T, Hisar for his valuable contribution to research work. Authors acknowledge the UGC, New Delhi for providing Rajiv Gandhi National Fellowship and Coordinator, DST-FIST, Department of Pharmaceutical Sciences, G.J.U S&T, Hisar for providing zetasizer and HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Kandav.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandav, G., Bhatt, D.C. & Jindal, D.K. Targeting kidneys by superparamagnetic allopurinol loaded chitosan coated nanoparticles for the treatment of hyperuricemic nephrolithiasis. DARU J Pharm Sci 27, 661–671 (2019). https://doi.org/10.1007/s40199-019-00300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00300-4

Keywords

Navigation