Skip to main content
Log in

In vitro anti-proliferative activities of the sterols and fatty acids isolated from the Persian Gulf sponge; Axinella sinoxea

  • Research Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Purpose

Marine sponges are rich sources of anticancer metabolites. Axinella sinoxea is a less studied sponge, found in the Larak Island’s waters, of the Persian Gulf. In the present study, we have explored the cytotoxic properties and chemical constituents of A. sinoxea.

Methods

Repeated silica gel flash column chromatography of methanol extract of the Axinella sinoxea sponge, yielded fatty acid and sterol fractions. These fractions were analyzed by GC-MS and their anti-proliferative activities were evaluated by MTT assay against three human cancer cell lines including MOLT-4, MCF-7 and HT-29 as well as NIH/3 T3 fibroblast cells. The sterol-rich fractions were pooled and purified by HPLC and its sub fractions’ cytotoxic activities were evaluated by MTT assay against MOLT-4 and NIH/3 T3 cells.

Results

The GC-MS spectral analysis of a fraction eluted with hexane: diethyl ether (90: 10), resulted in the identification of twelve fatty acids, including five linear chain saturated fatty acids; tetrdecanoic acid (1), pentadecanoic acid (3), hexadecanoic acid (5), heptadecanoic acid (7), and octadecanoic acid (10); one branched chain isoprenoid fatty acid, 4,8,12-trimethyltridecanoic acid (2); four monoenoic fatty acids; 9-hexadecenoic acid (4), 7-methyl-6-hexadecanoic acid (6), 9-octadecenoic acid (8) and 11-octadecenoic acid (9) and two polyunsaturated fatty acids; 5,8,11,14-eicosatetraenoic acid (11) and 4,7,10,13,16,19-docosahexaenoic acid (12). Spectral analysis of a non-polar fraction eluted with hexane: diethyl ether (85: 15), resulted in the identification of eight steroids including: cholesta-5,22-dien-3β-ol (13), cholest-5-en-3β-ol (14), ergosta-5,22-dien-3β-ol (15), ergost-5-en-3β-ol (16), stigmasta-5,22-dien-3β-ol (17), γ-sitosterol (18), 33-norgorgosta-5,24(28)-dien-3β-ol (19) and stigmasta-5,24(28)-dien-3β-ol (20). Fatty acids-containing fraction was active against HT-29 cell line with IC50 26.52 ± 8.19 μg/mL, while the steroids-rich fraction was active against the three above mentioned cell lines with IC50 values of 1.20 ± 0.24, 4.12 ± 0.40 and 2.47 ± 0.31 μg/mL, respectively. All of the above-mentioned fractions and sub-fractions were inactive (IC50s > 50 μg/mL) when assayed against normal fibroblast cells.

Conclusion

The present study suggests A. sinoxea as a potential natural source of cancer chemotherapeutics.

Cytotxic constituents of Axinella sinoxea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bergé J-P, Barnathan G. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Mar Biotechnol I. Springer; 2005. p. 49–125.

  2. Pereira DM, Valentão P, Teixeira N, Andrade PB. Amino acids, fatty acids and sterols profile of some marine organisms from Portuguese waters. Food Chem. 2013;141(3):2412–7.

    Article  CAS  Google Scholar 

  3. Rod'kina S. Fatty acids and other lipids of marine sponges. Russ J Mar Biol. 2005;31(1):S49–60.

    Article  CAS  Google Scholar 

  4. Mohamad H, Jamil WANWA, Abas F, Mohamad KS, Ali AM, editors. Octacosanoic acid, long chains saturated fatty acid from the marine sponges Xestospongia sp. Selected Articles from the International Conference on Marine Organisms and their Biomedical Potentials 2008; 2009.

  5. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–62.

    Article  CAS  Google Scholar 

  6. Anuradha V, Byju K, Emilda R, Anu G, Nair S, Chandramohanakumar N, et al. In silico biological activity of steroids from the marine sponge Axinella carteri. Med Chem Res. 2013;22(3):1142–6.

    Article  CAS  Google Scholar 

  7. Imbs AB, Rodkina SA. Isolation of 2-methyl branched unsaturated very long fatty acids from marine sponge Halichondria panicea and identification of them by GC–MS and NMR. Chem Phys Lipids. 2004;129(2):173–81.

    Article  CAS  Google Scholar 

  8. Litchfield C, Greenberg AJ, Noto G, Morales RW. Unusually high levels of C24− C30 fatty acids in sponges of the class demospongiae. Lipids. 1976;11(7):567–70.

    Article  CAS  Google Scholar 

  9. Biegelmeyer R, Schröder R, Rambo DF, Dresch RR, Stout EP, Carraro JLF, et al. Cytotoxic effects on tumour cell lines of fatty acids from the marine sponge Scopalina ruetzleri. J Pharm Pharmacol. 2015;67(5):746–53. https://doi.org/10.1111/jphp.12366.

    Article  CAS  PubMed  Google Scholar 

  10. Makarieva TN, Santalova EA, Gorshkova IA, Dmitrenok AS, Guzii AG, Gorbach VI, et al. A new cytotoxic fatty acid (5Z, 9Z)-22-methyl-5, 9-tetracosadienoic acid and the sterols from the far eastern sponge Geodinella robusta. Lipids. 2002;37(1):75–80.

    Article  CAS  Google Scholar 

  11. Funel C, Berrué F, Roussakis C, Fernandez Rodriguez R, Amade P. New cytotoxic steroids from the Indian Ocean sponge Axinella cf. b idderi. J Nat Prod. 2004;67(3):491–4.

    Article  CAS  Google Scholar 

  12. Alvarez B, Hooper JN. Taxonomic revision of the order Halichondrida (Porifera: Demospongiae) of Northern Australia: family Axinellidae. Beagle Rec Mus Art Gall North Terr. 2009;25:17–42.

    Google Scholar 

  13. Hooper J. Sponguide: guide to sponge collection and identification. South Brisbane: Queensland Museum; 2000.

    Google Scholar 

  14. Jassbi AR, Miri R, Asadollahi M, Javanmardi N, Firuzi O. Cytotoxic, antioxidant and antimicrobial effects of nine species of woundwort (Stachys) plants. Pharm Biol. 2014;52(1):62–7.

    Article  CAS  Google Scholar 

  15. Rohloff J. Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC-MS-based metabolite profiling. Molecules. 2015;20(2):3431–62.

    Article  CAS  Google Scholar 

  16. Zare S, Ghaedi M. Phytochemical investigation on Euphorbia macrostegia (Persian wood spurge). IJPR. 2015;14(1):243–9.

    CAS  PubMed  Google Scholar 

  17. Jassbi AR, Mohabati M, Eslami S, Sohrabipour J, Miri R. Biological activity and chemical constituents of red and brown algae from the Persian Gulf. IJPR. 2013;12(3):339–48.

    CAS  PubMed  Google Scholar 

  18. Szyrwinska K, Kolodziejczak A, Rykowska I, Wasiak W, Lulek J. Derivatization and gas chromatography-low-resolution mass spectrometry of bisphenol A. Acta Chromatogr. 2007;18:49.

    CAS  Google Scholar 

  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  CAS  Google Scholar 

  20. Firuzi O, Miri R, Asadollahi M, Eslami S, Jassbi AR. Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven salvia species from Iran. IJPR. 2013;12(4):801–10.

    CAS  PubMed  Google Scholar 

  21. Shekari F, Sadeghpour H, Javidnia K, Saso L, Nazari F, Firuzi O, et al. Cytotoxic and multidrug resistance reversal activities of novel 1, 4-dihydropyridines against human cancer cells. Eur J Pharmacol. 2015;746:233–44.

    Article  CAS  Google Scholar 

  22. National institute of standards and technology, NIST Chemistry WebBook, SRD 69. (https://webbook.nist.gov).

  23. pubchem database (https://pubchem.ncbi.nlm.nih.gov).

  24. database of pheromones and semiochemicals (http://www.pherobase.com/database/compound).

  25. Bergmann W, McTigue FH, Low EM, Stokes WM, Feeney RJ. Contributions to the study of marine products. Xxvi.1 sterols from sponges of the family suberitidae2. J Organomet Chem. 1950;15(1):96–105. https://doi.org/10.1021/jo01147a016.

    Article  CAS  Google Scholar 

  26. Makarieva T, Shubina L, Kalinovsky A, Stonik V, Elyakov G. Steroids in Porifera. II. Steroid derivatives from two sponges of the family Halichondriidae. Sokotrasterol sulfate, a marine steroid with a new pattern of side chain alkylation. Steroids. 1983;42(3):267–81.

    Article  CAS  Google Scholar 

  27. Sica D, Piccialli V, Pronzato R. Δ5,7Sterols from the sponges Ircinia pipetta and Dysidea avara identification of cholesta-5,7,24-trien-3B-OL. Comp Biochem Physiol B: Comp Biochem. 1987;88(1):293–6.

    Article  Google Scholar 

  28. Kong C-J, Li L, Chen M, Cao F, Wang C-Y. Brominated polyunsaturated lipids and steroids from the South China Sea sponge Haliclona subarmigera. Chem Nat Compd. 2016;52(5):883–5.

    Article  CAS  Google Scholar 

  29. Carballeira NM, Maldonado L, Porras B. Isoprenoid fatty acids from marine sponges. Are sponges selective? Lipids. 1987;22(10):767–9.

    Article  CAS  Google Scholar 

  30. Carballeira NM, Maldonado ME, Rivera E, Porras B. The fatty acid 4, 8, 12-trimethyltridecanoic as a common constituent of the phospholipids of the sponge families Spirastrellidae and Clionidae. Biochem Syst Ecol. 1989;17(4):311–4.

    Article  CAS  Google Scholar 

  31. Gillan FT, Stoilov IL, Thompson JE, Hogg RW, Wilkinson CR, Djerassi C. Fatty acids as biological markers for bacterial symbionts in sponges. Lipids. 1988;23(12):1139–45.

    Article  CAS  Google Scholar 

  32. Barnathan G, Miralles J, Kornprobst J-M. Sponge fatty acids-4. Co-occurrence of two isoprenoid fatty acids (4, 8, 12-trimethyltridecanoic and 5, 9, 13-trimethyltetradecanoic) in phospholipids of marine sponges from the genus Cinachrella. Nat Prod Lett. 1993;3(2):113–8.

    Article  CAS  Google Scholar 

  33. Cockbain A, Toogood G, Hull M. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut. 2012;61(1):135–49.

    Article  CAS  Google Scholar 

  34. Diggle CP. In vitro studies on the relationship between polyunsaturated fatty acids and cancer: tumour or tissue specific effects? Prog Lipid Res. 2002;41(3):240–53.

    Article  CAS  Google Scholar 

  35. Kuan C-Y, Walker TH, Luo PG, Chen C-F. Long-chain polyunsaturated fatty acids promote paclitaxel cytotoxicity via inhibition of the MDR1 gene in the human colon cancer Caco-2 cell line. J Am Coll Nutr. 2011;30(4):265–73.

    Article  CAS  Google Scholar 

  36. Zhang C, Yu H, Shen Y, Ni X, Shen S, Das UN. Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway. AMS. 2015;11(5):1081–94.

    CAS  PubMed  Google Scholar 

  37. Kellner-Weibel G, Geng YJ, Rothblat GH. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis. 1999;146:309–19.

    Article  CAS  Google Scholar 

  38. Sundarraj S, Thangam R, Sreevani V, Kaveri K, Gunasekaran P, Achiraman S, et al. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J Ethnopharmacol. 2012;141:803–80935.

    Article  CAS  Google Scholar 

  39. Bunyathaworn P, Boonananwong S, Kongkathip B, Kongkathip N. Further study on synthesis and evaluation of 3, 16, 20-polyoxygenated steroids of marine origin and their analogs as potent cytotoxic agents. Steroids. 2010;75(6):432–44.

    Article  CAS  Google Scholar 

  40. Govindam SV, Choi B-K, Yoshioka Y, Kanamoto A, Fujiwara T, Okamoto T, et al. Novel cytotoxic polyoxygenated steroids from an Okinawan sponge Dysidea sp. Biosci Biotechnol Biochem. 2012;76(5):999–1002.

    Article  CAS  Google Scholar 

  41. Aiello A, Fattorusso E, Menna M, Carnuccio R, Iuvone T. New cytotoxic steroids from the marine sponge Dysidea fragilis coming from the lagoon of Venice. Steroids. 1995;60(10):666–73.

    Article  CAS  Google Scholar 

  42. Xu S, Liao X, Du B, Zhou X, Huang Q, Wu C. A series of new 5, 6-epoxysterols from a Chinese sponge Ircinia aruensis. Steroids. 2008;73(5):568–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thanks the Vice-Provosts for Researches of University of Hormozgan, Bandar Abbas and Shiraz University of Medical Sciences, for their financial support of this project. The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for his valuable assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Reza Jassbi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary Jamebozorgi, F., Yousefzadi, M., Firuzi, O. et al. In vitro anti-proliferative activities of the sterols and fatty acids isolated from the Persian Gulf sponge; Axinella sinoxea. DARU J Pharm Sci 27, 121–135 (2019). https://doi.org/10.1007/s40199-019-00253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00253-8

Keywords

Navigation