Skip to main content
Log in

Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Laser 3D printing, also known as laser additive manufacturing (LAM), is favored for its ability to form bulk metallic glass (BMG) and its composite materials (BMGcs) with freeform geometries. In this work, two different kinds of Fe41Co7Cr15Mo14C15B6Y2 amorphous coatings (A and B) were prepared by using LAM technology under air- and water-cooled conditions, respectively; meanwhile, to reduce the cracks generated due to the residual thermal stresses, coating C obtained by air-sweep annealing of B with a low energy–density laser. The morphology and amorphous content and microstructure of the coatings were investigated, the results show many cracks in coating B deposited under water-cooled conditions, and its microstructure shows an amorphous–crystal–nanocrystalline mixed structure. Cracking was suppressed in coating C, obtained by air-sweep annealing based on coating B, but the amorphous content was reduced from 32.6 to 13.4%. And the hardness and corrosion resistance of the coating will increase with the increase in the amorphous content. Finally, the internal friction behavior of a BMGcs was prepared on the basis of the process of sample C is compared with that of as-cast amorphous alloys. The results show that the low temperature internal friction behavior of BMGcs is affected by the defects produced during printing, and the high temperature internal friction behavior is affected by the precipitated hard phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007)

    Article  ADS  CAS  Google Scholar 

  2. S.V. Madge, Metals 5, 1279 (2015)

    Article  Google Scholar 

  3. Y. Wei, X. Lei, L.S. Huo, W.H. Wang, A.L. Greer, Mater. Sci. Eng. A 560, 510 (2013)

    Article  CAS  Google Scholar 

  4. J.F. Wang, R. Li, N.B. Hua, T. Zhang, J. Mater. Res. 26, 2072 (2011)

    Article  ADS  CAS  Google Scholar 

  5. Y.Q. Li, Y.Y. Shen, M.C. Leu, H.L. Tsai, Mater. Sci. Eng. A 743, 404 (2019)

    Article  CAS  Google Scholar 

  6. J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, G. Wang, J. Appl. Phys. Lett. 86, 151907 (2005)

    Article  ADS  Google Scholar 

  7. H.X. Xia, Q.J. Chen, C.J. Wang, J. Rare Earths 35, 406 (2017)

    Article  CAS  Google Scholar 

  8. S.W. Wang, Y.H. Li, X.W. Wang, S. Yamaura, W. Zhang, J. Non-Cryst. Solids 476, 75 (2017)

    Article  ADS  CAS  Google Scholar 

  9. Y. Wang, S.L. Jiang, Y.G. Zheng, W. Ke, W.H. Sun, J.Q. Wang, Corros. Sci. 63, 159 (2012)

    Article  CAS  Google Scholar 

  10. S.F. Guo, J.L. Qiu, P. Yu, S.H. Xie, W. Chen, Appl. Phys. Lett. 105, 161901 (2014)

    Article  ADS  Google Scholar 

  11. J.Y. Lee, J. An, C.K. Chua, Appl. Mater. Today 7, 120 (2017)

    Article  Google Scholar 

  12. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprewe, Int. Mater. Rev. 57, 133 (2012)

    Article  CAS  Google Scholar 

  13. Y.Z. Lu, H. Zhang, H.G. Li, H.D. Xu, G.K. Huang, Z.X. Qin, X. Lu, J. Non-Cryst. Solids 461, 12 (2017)

    Article  ADS  CAS  Google Scholar 

  14. S. Pauly, L. Lober, R. Petter, M. Stoica, S. Scudino, U. Kuhn, J. Eckert, Mater. Today 16, 37 (2013)

    Article  CAS  Google Scholar 

  15. H.Y. Jung, S.J. Choi, K.G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kuhn, D.H. Kin, K.B. Kim, J. Eckert, Mater. Des. 86, 703 (2015)

    Article  CAS  Google Scholar 

  16. Y.Z. Lu, G.K. Huang, Y.Z. Wang, H.G. Li, Z.X. Qin, X. Lu, Mater. Lett. 210, 46 (2018)

    Article  CAS  Google Scholar 

  17. Q.J. Li, D.D. Qin, Y.Z. Lu, X.M. Zhu, X. Lu, J. Mater. Sci. Technol. 121, 148 (2022)

    Article  CAS  Google Scholar 

  18. N. Li, J.J. Zhang, W. Xing, D. Ouyang, L. Liu, Mater. Des. 143, 285 (2018)

    Article  CAS  Google Scholar 

  19. L.F. Wang, Q.D. Zhang, Z.Y. Huang, X. Cui, F.Q. Zu, J. Non-Cryst. Solids 406, 127 (2015)

    Article  ADS  Google Scholar 

  20. F. Xie, Q.J. Chen, J.W. Gao, Y.L. Li, J. Mater. Eng. Perform. 28, 3478 (2019)

    Article  CAS  Google Scholar 

  21. D. Ma, H. Tan, D. Wang, Y. Li, E. Ma, Appl. Phys. Lett. 86, 279 (2005)

    Google Scholar 

  22. Y.B. Lv, Q.J. Chen, Thermochim. Acta 666, 36 (2018)

    Article  CAS  Google Scholar 

  23. J.J. Han, C.P. Wang, S.Z. Kou, X.J. Liu, Trans. Nonferr. Meter. Soc. China 23, 148 (2013)

    Article  CAS  Google Scholar 

  24. T. Xu, G. Li, E.H. Yin, X. Li, L.C. Zhuo, Z.Y. Jian, J. Non-Cryst. Solids 703, 179013 (2020)

    Google Scholar 

  25. L. Wang, J.G. Wang, M.T. Sun, Chem. Phys. Lett. 750, 137511 (2020)

    Article  CAS  Google Scholar 

  26. R.P. Li, Q.J. Chen, L. Ji, X.Y. Peng, G.S. Huang, J. Non-Cryst. Solids 563, 120813 (2021)

    Article  CAS  Google Scholar 

  27. D.X. Pang, J.T. Wang, A.Q. He, B.Z. Ding, Mater. Lett. 7, 263 (1988)

    Article  CAS  Google Scholar 

  28. X. Cu, F.Q. Zu, L.F. Wang, Z.Z. Wan, X.Y. Li, Z.Y. Huang, J. Non-Cryst. Solids 366, 59 (2013)

    Article  ADS  Google Scholar 

  29. B. Zhang, F.Q. Zu, K. Zhen, J.P. Shui, P. Wen, J. Phys. Condens. Matter 14, 7461 (2002)

    Article  ADS  CAS  Google Scholar 

  30. S. Zhang, K. Chong, Z.B. Zhang, Y. Cao, D.T. Wu, G.L. Zhao, J. Non-Cryst. Solids 593, 121775 (2022)

    Article  CAS  Google Scholar 

  31. D. Wang, P. Zhou, Y. Zhang, T. Zhang, F.H. Wang, Corros. Sci. 222, 111428 (2023)

    Article  CAS  Google Scholar 

  32. J.J. Si, X.H. Chen, Y.H. Cai, Y.D. Wu, T. Wang, X.H. Hui, Corros. Sci. 107, 123 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52161028), the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province (No. 20213BCJ22017).

Author information

Authors and Affiliations

Authors

Contributions

SH: Conceptualization, Formal analysis, Writing—original draft, Visualization. QC: Supervision, Resources, Funding acquisition. LJ: Writing-review and editing, Supervision, Methodology. KW: Writing-review and editing. GH: Investigation, Supervision.

Corresponding author

Correspondence to Qingjun Chen.

Ethics declarations

Conflict of interest

The authors state that there are no conflict of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Chen, Q., Ji, L. et al. Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites. Acta Metall. Sin. (Engl. Lett.) 37, 196–204 (2024). https://doi.org/10.1007/s40195-023-01619-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01619-3

Keywords

Navigation