Skip to main content
Log in

Solidification Behavior and Microstructures Characteristics of Ti-48Al-3Nb-1.5Ta Powder Produced by Supreme-Speed Plasma Rotating Electrode Process

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this study, the characteristics and solidification behavior of Ti-48Al-3Nb-1.5Ta powder produced by supreme-speed plasma rotating electrode process (SS-PREP®) were investigated. The microstructure, phase and characteristics were analyzed by scanning electron microscopy, X-ray diffraction and other methods. The atomization mechanism is direct drop formation. The relationship between the particle size and cooling rate is \(v_{{\text{c}}} = 3.14 \times 10^{ - 7} \cdot d^{ - 2} + 1.18 \times 10^{ - 2} \cdot d^{{ - \frac{3}{2}}}\), and the relationship between secondary dendrite arm space and the particle size is \(\lambda = 0.028d + 0.11\), as well as the relationship between SDAS and cooling rate is \(\lambda = 4.84 \times 10^{5} \cdot T^{ - 1.43}\). With increase in particle size, the surface structure gradually changes from the featureless smooth structure to dendritic and cellular dendritic morphology, and the flow ability becomes better. The carbides mainly exist within 5 nm of the surface and the oxidation layer is about 20 nm thick. Ti-48Al-3Nb-1.5Ta powder was mainly composed of α2 phase and γ phase. With increase in particle size, the content of γ phase increases, and the hardness decreases accordingly. The 106–250 μm particles are composed of multiple grains with the grain size of 70–80 μm. The microstructure, phase composition and hardness of different TiAl powders with the same size are similar, but the elastic modulus is different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. H. Appel, J. Paul, M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Weinheim, 2011), pp.465–732

    Book  Google Scholar 

  2. R. Yang, Acta Metall. Sin. 51, 129 (2015)

    CAS  Google Scholar 

  3. B. Bewlay, S. Nag, A. Suzuki, M. Weimer, Mater. High Temp. 33, 1 (2016)

    Article  Google Scholar 

  4. F. Appel, H. Clemens, F. Fischer, Prog. Mater. Sci. 81, 55 (2016)

    Article  CAS  Google Scholar 

  5. Y. Kim, S. Kim, JOM 70, 553 (2018)

    Article  Google Scholar 

  6. K. Zhang, Dissertation, Northwestern Polytechnic University (2020)

  7. R. Zhang, P. Liu, C. Cui, J. Qu, B. Zhang, J. Du, Acta Metall. Sin. 57, 1215 (2021)

    CAS  Google Scholar 

  8. P. Huang, Principles of Powder Metallurgy, 2nd edn. (Metallurgical Industry Press, 1997), p. 312

  9. B. Huang, TiAl-based Intermetallic Compound. (Central South University Press, 1998), p. 7

  10. X. Yang, Z. Xi, Y. Liu, H. Tang, W. He, W. Jia, Rare Met. Mater. Eng. 39, 2251 (2010)

    CAS  Google Scholar 

  11. J. Liu, Q. Yu, Q. Guo, Chem. Eng. Sci. 73, 44 (2012)

    Article  CAS  Google Scholar 

  12. V. Sobolev, N. Nesterov, Powder Metall. Met. Ceram. 28, 829 (1989)

    Article  Google Scholar 

  13. B. Champagne, R. Angers, Powder Metall. Int. 16, 125 (1984)

    CAS  Google Scholar 

  14. K. Tamotsu, K. Akira, J. Chem. Eng. JPN 4, 364 (1971)

    Article  Google Scholar 

  15. Y. Liu, X. Zhao, Y. Lai, Q. Wang, L. Lei, S. Liang, Prog. Mater. Sci. 30, 94 (2020)

    CAS  Google Scholar 

  16. K. Isonishi, M. Tokizane, Tetsu- to- Hagane. 76, 2108 (2009)

    Article  Google Scholar 

  17. Y. Liu, S. Liang, Z. Han, J. Song, Q. Wang, Powder Technol. 336, 406 (2018)

    Article  CAS  Google Scholar 

  18. C. Basak, M. Krishnan, R. Kumar, K. Abdullah, S. Anantharaman, J. Alloys Compd. 597, 15 (2014)

    Article  CAS  Google Scholar 

  19. D. Yang, S. Guo, H. Peng, F. Cao, N. Liu, J. Sun, Intermetallics 61, 72 (2015)

    Article  CAS  Google Scholar 

  20. M. Zduji, D. Uskokovi, Production of metal powders by rotting electrode process. Paper presented at the VIIIth German-Yugoslav Meeting on Materials Sciences and Development, 8 Oct 2018

  21. S. Hata, K. Oki, T. Hashimoto, N. Kuwano, J. Phase Equilibria 22, 386 (2001)

    Article  CAS  Google Scholar 

  22. B. Rabin, G. Smolik, G. Korth, Mater. Sci. Eng. A 124, 1 (1990)

    Article  Google Scholar 

  23. D. Yang, Dissertation, Harbin Institute of Technology (2015)

  24. J. Shen, X. Ma, G. Wang, J. Jia, Rare Met. Mater. Eng. 30, 273 (2001)

    CAS  Google Scholar 

  25. B. Zhou, Z. Xie, J. Shen, Mater. Sci. Technol. 12, 190 (2004)

    Google Scholar 

  26. V.N. Nurni, N. Ballal, in Rate Phenomena, in Process Metallurgy. ed. by S. Seetharaman, T.P. Metall (Elsevier, Boston, 2014), pp.658–815

    Chapter  Google Scholar 

  27. Z. Xie, Dissertation, Harbin Institute of Technology (2001)

  28. J. Estrada, J. Duszczyk, J. Mater. Sci. 25, 886 (1990)

    Article  CAS  Google Scholar 

  29. J. Huang, Industrial Gas Manual, (Chemical Industry Press, 2002), p. 300

  30. T. Peng, J. Guilin Inst. Technol. 20, 65 (2000)

    CAS  Google Scholar 

  31. Y. Bao, L. Luo, Z. Yu, D. Yang, N. Liu, G. Zhang, J. Mater. Eng. 46, 117 (2018)

    Google Scholar 

  32. Q. Li, L. Zhang, X. Chen, D. Wei, P. Zhang, Y. Chen, Met. Powder Rep. 75, 82 (2020)

    Article  Google Scholar 

  33. W. He, Y. Liu, H. Tang, Y. Li, B. Liu, X. Liang, Mater. Des. 132, 275 (2017)

    Article  CAS  Google Scholar 

  34. X. Ge, Dissertation, Northwestern Polytechnical University (2020)

  35. X. Cai, Rare Met. Mater. Eng. 23, 41 (1994)

    CAS  Google Scholar 

  36. D.M. Stefanescu, Science and Engineering of Casting Solidification (Springer, Columbus, 2015), p.179

    Book  Google Scholar 

  37. X. Liu, Dissertation, Northwestern Polytechnical University (2016)

  38. D. Bouchard, J. Kirkaldy, Metall. Mater. Trans. B 28, 651 (1997)

    Article  Google Scholar 

  39. Y. Sun, Philos. Mag. Lett. 78, 297 (1998)

    Article  CAS  Google Scholar 

  40. N. Liu, Z. Li, H. Yuan, W. Xu, Y. Zhang, G. Zhang, J. Iron Steel Res. 23, 537 (2011)

    Google Scholar 

  41. M. Schloffer, F. Iqbal, H. Gabrisch, E. Schwaighofer, F. Schimansky, S. Mayer, Intermetallics 22, 231 (2012)

    Article  CAS  Google Scholar 

  42. H. Chen, Q. Wei, Y. Zhang, F. Chen, Y. Shi, W. Yan, Acta Mater. 179, 158 (2019)

    Article  CAS  Google Scholar 

  43. Y. Tan, J. Zhang, X. Li, Y. Xu, C. Wu, Powder Technol. 393, 154 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Key R&D Program of Shaanxi (Program No. 2022GY-388).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Hu or Qingxiang Wang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Z., Hu, R., Luo, X. et al. Solidification Behavior and Microstructures Characteristics of Ti-48Al-3Nb-1.5Ta Powder Produced by Supreme-Speed Plasma Rotating Electrode Process. Acta Metall. Sin. (Engl. Lett.) 36, 1221–1234 (2023). https://doi.org/10.1007/s40195-023-01539-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01539-2

Keywords

Navigation