Skip to main content
Log in

Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The hydrogen embrittlement (HE) fracture of advanced high-strength steels used in lightweight automobiles has received increasing public attention. The source, transmission, and movement of hydrogen, characterization parameters, and test methods of HE, as well as the characteristics and path of HE fractures, are introduced. The mechanisms and modes of crack propagation of HE and hydrogen-induced delayed fracture are reviewed. The recent progress surrounding micro and macro typical fracture characteristics and the influencing factors of HE are discussed. Finally, methods for improving HE resistance can be summarized as follows: (1) reducing crystalline grain and inclusion sizes (oxides, sulfides, and titanium nitride), (2) controlling nano-precipitates (niobium carbide, titanium carbide, and composite precipitation), and (3) increasing residual austenite content under the reasonable tension strength of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.H. Johnson, Nature 11, 393 (1875)

    Google Scholar 

  2. W.T. Anthoy, I.M. Bernstein, Stress Corrosion Cracking and hydrogen embrittlement, Review of advances in physical Metallurgy (Metallurgical Industry Press, Beijing, 1985), pp.482–505

    Google Scholar 

  3. P. Hirthj, Metall. Trans. A 11, 861 (1980)

    Google Scholar 

  4. M. Wang, E. Akiyamae, K. Tsuzaki, Corros. Sci. 49, 4081 (2007)

    CAS  Google Scholar 

  5. Q. Liu, A. Atrens, Corros. Rev. 31, 85 (2013)

    Google Scholar 

  6. M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, P. Sofronis, Int. J. Fract. 196, 223 (2015)

    CAS  Google Scholar 

  7. H. Bhadeshia, ISIJ Int. 56, 24 (2016)

    CAS  Google Scholar 

  8. M.T. Ma, H.Z. Lu, Y.S. Chen, B.Y. Liu, Automobile Technol. Mater. 4, 1 (2021)

    CAS  Google Scholar 

  9. S.W. Owen, Met. Technol. 7, 1 (1980)

    Google Scholar 

  10. M.T. Ma, B.R. Wu, Duplex Steel-Physical and Mechanical Metallurgy (Metallurgical Industry Press, Beijing, 1988), pp.1–10

    Google Scholar 

  11. M.T. Ma, H.L. Yi, H.Z. Lu, Eng. Sci. 9, 71 (2012)

    Google Scholar 

  12. M.T. Ma, S.W. Jiang, G.Y. Li, Y. Feng, J. Zhou, H.Z. Lu, F.H. Li, Mater. Mech. Eng. 44, 1 (2020)

    Google Scholar 

  13. Y.J. Zhang, W.J. Hui, H. Dong, Acta Metall. Sin. Engl. Lett. 49, 1153 (2013)

    CAS  Google Scholar 

  14. J.Y. Li, H.B. Zhang, W.Z. Tan, G.P. Zhou, X.H. Wang, D.G. Ma, C.L. Liu, Analysis of Delayed Cracking Of Hot Stamping Steel, Study on Hydrogen-Induced Delayed Fracture of Chinese Automobile EVI and High Strength Steel (Beijing Institute of Technology Press, Beijing, 2019), pp.318–324

    Google Scholar 

  15. R.G. Davies, Metall. Trans. A 12, 1667 (1981)

    CAS  Google Scholar 

  16. H. Zhao, P. Chakraborty, D. Ponge, T. Hickel, B. Sun, C.H. Wu, B. Gault, D. Raabe, Nature 602, 437 (2022)

    CAS  Google Scholar 

  17. S. Hu, Y. Yin, H. Liang, Y.Z. Zhang, Y. Yan, Mater. Des. 218, 110702 (2022)

    CAS  Google Scholar 

  18. C.B. Sebastian, S. Thierry, A. Anis, Hydrogen Embrittlement resistance of Al-Si coated 1.8GPa press hardened steel solutions for body-in-white(BIW) application//7 international conference for hot sheet metal forming of high-performance steel CHS2, 2019, June 2–5th, Lulea Sweden, edited by Mats Oldenburg, Jens Hardell, Daniel Casellas. 2019: 179–189.

  19. T. John, W.T. Anthony, I.M. Bernstein, J.R. Rebecca, Metall. Trans. A 7, 821 (1976)

    Google Scholar 

  20. T. Shinko, G. Hénaff, D. Halm, G. Benoit, G. Bilotta, M. Arzaghi, Int. J. Fatigue 121, 197 (2019)

    CAS  Google Scholar 

  21. Q.H. Liu, H.W. Tang, T.Z. Si, Mater. Prod. 51, 134 (2018)

    Google Scholar 

  22. R.A. Oriani, Acta Metall. 18, 147 (1970)

    CAS  Google Scholar 

  23. E. Fricke, H. Stüwe, G. Vibrans, Metall. Mater. Trans. A 2, 2697 (1971)

    CAS  Google Scholar 

  24. J. Han, J.H. Nam, Y.K. Lee, Acta Metall. 113, 1 (2016)

    CAS  Google Scholar 

  25. K. Hirata, S. Iikubo, M. Koyama, K. Tsuzaki, H. Ohtani, Metall. Mater. Trans. A 49, 5015 (2018)

    CAS  Google Scholar 

  26. T. Das, R. Chakrabarty, J. Song, S. Yue, Int. J. Hydrog. Energy 47, 1343 (2022)

    CAS  Google Scholar 

  27. N. Yazdipour, A.J. Haq, K. Muzaka, E.V. Pereloma, Comput. Mater. Sci. 56, 49 (2012)

    CAS  Google Scholar 

  28. Y. Momotani, A. Shibata, T. Yonemura, B. Yu, N. Tsuji, Scr. Mater. 178, 318 (2020)

    CAS  Google Scholar 

  29. D. Guedes, L. Cupertino Malheriros, A. Oudriss, S. Cohendoz, J. Bouhattate, J. Creus, F. Thebault, M. Piette, X. Feaugas, Acta Metall. 186, 133 (2020)

    CAS  Google Scholar 

  30. D. Rudomilova, T. Proek, P. Salvetr, A. Knaislová, G. Luckeneder, Mater. Corros. 71, 909 (2019)

    Google Scholar 

  31. A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, E.I. Galindo-Nava, Acta Metall. 194, 118 (2020)

    CAS  Google Scholar 

  32. T/CSAE 155–2020 U-shaped constant bending load test method for hydrogen-induced delayed fracture sensitivity of ultra-high strength automotive steel plates.

  33. M.T. Ma, G.D. Wang, D.F. Wang, Introduction to Automotive Lightweight (Chemical Industry Press, Beijing, 2020), pp.158–178

    Google Scholar 

  34. J.S. Kim, Y.H. Lee, D.L. Lee, K.T. Park, C.S. Lee, Mater Sci. Eng. A 505, 105 (2009)

    Google Scholar 

  35. M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 48, 2189 (2006)

    CAS  Google Scholar 

  36. S. Hiroshi, T. Kenichi, Y. Hagihara, Strain-Aged High-Strength Steel with High-Resistance to Delayed Fracture and Its Mechanism. Paper presented at Material Mechanics Conference, The Japan society of Mechanical Engineers, Tokyo, 24–26 October 2007.

  37. S. Takagi, Y. Toji, M. Yoshino, K. Hasegawa, ISIJ Int. 52, 316 (2012)

    CAS  Google Scholar 

  38. G.L. Pioszak, R.P. Gangloff, Corrosion 73, 1132 (2017)

    CAS  Google Scholar 

  39. B. Sun, J.P. Lin, X.L. Gao, Hot Work. Technol. 44, 183 (2015)

    Google Scholar 

  40. K. Bergers, E. Camisão de Souza, I. Thomas, N. Mabho, J. Flock, Steel Res. Int. 81, 499 (2010)

    CAS  Google Scholar 

  41. Kirchheimr, Acta Metall. 55 5139 (2007)

  42. Kirchheimr, Acta Metall. 55 5129 (2007)

  43. G. Westlaked, Argonne Natl Lab. 3, 1 (1969)

    Google Scholar 

  44. A. Orianir, Ber Bunst für Phys. Chem. 76, 848 (1972)

    Google Scholar 

  45. D. Beachemc, Metall. Mater. Trans. B 3, 441 (1972)

    Google Scholar 

  46. K. Rnbaumh, Sofronisp, Mater. Sci. Eng. A 176 191 (1994)

  47. Y.A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz, Phys. Rev. B 84, 144121 (2011)

    Google Scholar 

  48. T. Yoshimasa, K. Hikaru, A. Ryo, A. Shigeo, H. Kimitaka, Y. Yamamoto, M. Shunsuke, T. Nobuo, Mater. Sci. Eng. A 661, 211 (2016)

    Google Scholar 

  49. C.S. Marchic, B. Somerdayb, Technical reference on hydrogen compatibility of materials. Geology (2005). https://doi.org/10.2172/1055634

    Article  Google Scholar 

  50. S.Q. Zhang, J.F. Wan, Q.Y. Zhao, J. Liu, F. Huang, Y.H. Huang, X.G. Li, Corros. Sci. 164, 108345 (2020)

    CAS  Google Scholar 

  51. A. Pundta, R. Kirchheimr, Annu. Rev. Mater. Res. 36, 555 (2006)

    Google Scholar 

  52. S. Lynchs, Corros. Rev. 30, 105 (2012)

    Google Scholar 

  53. M. Nagumom, Fundamentals of Hydrogen Embrittlement. Springer, 2016

  54. P. Gong, J. Nutter, P.E.J. Rivera-Diaz-Del-Castillo, W.M. Rainforth, Sci. Adv. 6, 6152 (2020)

    Google Scholar 

  55. L.S. Darken, R.P. Smith, Corrosion 5, 1 (1949)

    Google Scholar 

  56. H. Wu, B. Ju, D. Tang, R. Hu, A. Guo, Q. Kang, D. Wang, Mater Sci. Eng. A 622, 61 (2015)

    CAS  Google Scholar 

  57. A. Nagao, K. Hayashi, K. Oi, S. Mitao, ISIJ Int. 52, 213 (2012)

    CAS  Google Scholar 

  58. F.G. Wei, T.K. Hara, Adv. Mater. (2011). https://doi.org/10.1007/978-3-642-17665-4_11

    Article  Google Scholar 

  59. Y.S. Chen, H.Z. Lu, J.T. Laing, Science 367, 171 (2020)

    CAS  Google Scholar 

  60. R.J. Shi, Y. Ma, Z.D. Wang, Acta Metall. 200, 686 (2020)

    CAS  Google Scholar 

  61. M. Masoumi, L.P.M. Santos, I.N. Bastos, S.S.M. Tavares, M.J.G. da Silva, H.F.G. de Abreu, Mater. Des. 91, 90 (2016)

    CAS  Google Scholar 

  62. V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-hernández, J.M. Hallen, Corros. Sci. 53, 4204 (2011)

    CAS  Google Scholar 

  63. M.T. Ma, Advanced Automotive Steel (Chemical Industry Press, Beijing, 2008), pp.375–399

    Google Scholar 

  64. S.M. Lee, J.Y. Lee, Acta Metall. 35, 2695 (1987)

    CAS  Google Scholar 

  65. J. Takahashi, K. Kawakami, Y. Kobayashia, T. Taruib, Scr. Mater. 63, 261 (2010)

    CAS  Google Scholar 

  66. F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A 37, 331 (2006)

    Google Scholar 

  67. Y.C. Lin, I.E. McCarroll, Y.T. Lin, W.C. Chung, J.M. Cairney, H.W. Yen, Acta Mater. 196, 516 (2020)

    CAS  Google Scholar 

  68. Y. Si, Y.S. Tang, X. Zhou, K.J. Li, Y.L. Ma, M.T. Ma, Automob. Technol. Mater. 6, 16 (2022)

    Google Scholar 

  69. J. Lee, T. Lee, Y.J. Kwon, D.J. Mun, J.Y. Yoo, C.S. Lee, Met. Mater. Int. 22, 364 (2016)

    CAS  Google Scholar 

  70. Q.L. Yong, The Second Phase in Iron and Steel (Metallurgical Industry Press, Beijing, 2006), pp.146–147

    Google Scholar 

  71. M.T. Ma, Z.G. Li, Spec. Steel 10, 11 (2001)

    Google Scholar 

  72. J. Yoo, M.C. Jo, M.C. Jo, S. Kim, J. Oh, J. Bian, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 791, 139763 (2020)

    CAS  Google Scholar 

  73. X. Jin, L. Xu, W. Yu, K. Yao, J. Shi, M. Wang, Corros. Sci. 166, 108421 (2020)

    CAS  Google Scholar 

  74. B. Zhang, J. Su, M. Wang, Z. Liu, Z. Yang, M. Militzer, H. Chen, Acta Mater. 208, 116744 (2021)

    CAS  Google Scholar 

  75. Y. Zhang, W. Hui, X. Zhao, C. Wang, W. Cao, H. Dong, Eng. Fail. Anal. 97, 605 (2019)

    CAS  Google Scholar 

  76. J. Han, J.H. Nam, Y.K. Lee, Acta Mater. 113, 1 (2016)

    CAS  Google Scholar 

  77. M.R. Louthan Jr., R.G. Derrick, Corros. Sci. 15, 565 (1975)

    CAS  Google Scholar 

  78. M.T. Ma, Heat Treat. 29, 1 (2014)

    CAS  Google Scholar 

  79. X. Zhu, W. Li, H.S. Zhao, L. Wang, X.J. Jin, Int. J. Hydrog. Energy 39, 13031 (2014)

    CAS  Google Scholar 

  80. J. Yoo, M.C. Jo, D.W. Kim, H. Song, M. Koo, S.S. Sohn, S. Lee, Acta Mater. 196, 370 (2020)

    CAS  Google Scholar 

  81. G.E. Totten. Handbook of Residual Stress and Deformation of Steel (ASM international, 2002)

  82. V. Renzo, M.T. Michele, B. Linda, S. Corsinovi, D.C Daniele, Hydrogen Induced Delayed Fracture in hot Stamped Al-Si Coated Boron Steels, in 7th International Conference Hot Sheet Metal Forming of High-performance Steel June 2–5, (Lulea, Sweden, 2019), p. 191–200

  83. M.T. Ma, Y.S. Zhang, Research progress in Hot Stamping of Ultra-High Strength Steel, Automotive Advanced Manufacturing Technology Tracking Research 2016 (Beijing Institute of Technology Press, Beijing, 2016), pp.15–75

    Google Scholar 

  84. S.M. Myers, S.T. Picraux, J. Appl. Phys. 50, 5710 (1979)

    CAS  Google Scholar 

  85. A.I. Shirley, C.K. Hall, Scr. Mater. 17, 1003 (1983)

    CAS  Google Scholar 

  86. W.Y. Choo, J.Y. Lee, Metall. Trans. A 13, 135 (1982)

    Google Scholar 

  87. I. Maroef, D.L. Olson, M. Eberhart, G.R. Edwards, Metall. Rev. 47, 191 (2002)

    CAS  Google Scholar 

  88. F.G. Wei, T. Hara, K. Tsuzaki, Metall. Mater. Trans. B 35, 587 (2004)

    Google Scholar 

  89. S.M. Lee, J.Y. Lee, Metall. Trans. A 17, 181 (1986)

    Google Scholar 

  90. Y.D. Park, I.S. Maroef, D.L. Olson, Weld. J. 81, 7 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Vehicle NVH and Safety Technology (NVHSKL-202104), and the innovation research group of universities in Chongqing (CXQT21030, CXQT19031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jian Li.

Ethics declarations

Conflict of Interest

The authors state that there are no conflicts of interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, MT., Li, KJ., Si, Y. et al. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review. Acta Metall. Sin. (Engl. Lett.) 36, 1144–1158 (2023). https://doi.org/10.1007/s40195-022-01517-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01517-0

Keywords

Navigation