Skip to main content

Advertisement

Log in

In Situ Embedment of ZnS Nanocrystals in High Porosity Carbon Fibers as an Advanced Anode Material for Efficient Lithium Storage

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

ZnS is a promising material for lithium-ion battery anodes due to its abundant natural resources, simplicity of synthesis, and high theoretical lithium storage capacity. However, it needs to be optimized for its low conductivity and volume effect during the charge–discharge process. The traditional method of combining with carbonaceous materials is usually laborious, and the required sulfuration process may possibly result in the destruction of materials morphology. In this study, hybrid materials formed by the combination of ZnS nanocrystals and high porosity carbon fibers were synthesized by one-step electrospinning using zinc diethyldithiocarbamate and polyacrylonitrile as raw materials and poly (ethylene glycol)—block-poly (propylene glycol)—block-poly (ethylene glycol) as template. The method is simple and avoids the influence of sulfuration process on the morphology of materials. The composite presents a specific capacity of 592.2 mAh g−1 under a current density of 1 A g−1 after 1000 cycles. The porous structure significantly decreases the diffusion mean-free path of Li+ and inhibits the volume effect associated with the lithium storage process of ZnS. In addition, the 3D cross-linked carbon fibers improve the conductivity of materials. This study can serve as an inspiration for the development of other lithium storage composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Yang, Y.Y. Wang, B.H. Hou, H.J. Liang, X.X. Zhao, H. Fan, X.L. Wu, Acta Metall. Sin. Engl. Lett. 34, 390 (2021)

    Article  CAS  Google Scholar 

  2. Z. Li, Y. Fang, J. Zhang, X.W. Lou, Adv. Mater. 30, 1800525 (2018)

    Article  Google Scholar 

  3. J. Luo, H. Li, G. Yu, W. Xu, H. Yin, Z. Hou, Mater. Adv. 3, 3631 (2022)

    Article  CAS  Google Scholar 

  4. G.H. An, D.Y. Lee, Y.J. Lee, H.J. Ahn, ACS Appl. Mater. Interfaces 8, 30264 (2016)

    Article  CAS  Google Scholar 

  5. Y. Yan, H. Guo, Z. Wang, X. Li, G. Yan, J. Wang, Acta Metall. Sin. Engl. Lett. 34, 329 (2021)

    Article  CAS  Google Scholar 

  6. H.Q. Qu, H. Yin, Y.L. Wang, C. Fan, K.N. Hui, C. Li, M.Q. Zhu, Mater. Chem. Front. 5, 2832 (2021)

    Article  CAS  Google Scholar 

  7. X. Du, H. Zhao, Y. Lu, Z. Zhang, A. Kulka, K. Świerczek, Electrochim. Acta 228, 100 (2017)

    Article  CAS  Google Scholar 

  8. Y.S. Jang, Y.C. Kang, Phys. Chem. Chem. Phys. 15, 16437 (2013)

    Article  CAS  Google Scholar 

  9. H. Ren, Z. Wen, G. Wu, S. Chen, S.W. Joo, J. Huang, J. Phys. Chem. Solids 134, 43 (2019)

    Article  CAS  Google Scholar 

  10. J. Ma, X. Wang, H. Wang, G. Wang, S. Ma, J. Alloy. Compd. 735, 51 (2018)

    Article  CAS  Google Scholar 

  11. R. Zhang, Y. Wang, M. Jia, J. Xu, E. Pan, Appl. Surf. Sci. 437, 375 (2018)

    Article  CAS  Google Scholar 

  12. F.S. Ke, Y.S. Wu, H. Deng, J. Solid. State. Chem. 223, 109 (2015)

    Article  CAS  Google Scholar 

  13. L. He, X.Z. Liao, K. Yang, Y.S. He, W. Wen, Z.F. Ma, Electrochim. Acta 56, 1213 (2011)

    Article  CAS  Google Scholar 

  14. K.W. Sung, B.R. Koo, H.J. Ahn, J. Alloy. Compd. 854, 157206 (2021)

    Article  CAS  Google Scholar 

  15. C. Guo, Q. Wang, J. He, C. Wu, K. Xie, Y. Liu, J. Phys. Chem. Lett. 11, 905 (2020)

    Article  CAS  Google Scholar 

  16. L. Huang, Y. Zhang, C. Shang, X. Wang, G. Zhou, J.Z. Ou, Y. Wang, ChemElectroChem 6, 461 (2019)

    Article  CAS  Google Scholar 

  17. Z. Li, Y. Cao, G. Li, L. Chen, W. Xu, M. Zhou, B. He, W. Wang, Z. Hou, Electrochim. Acta 366, 137466 (2021)

    Article  CAS  Google Scholar 

  18. M. Guan, Z. Li, J. Ouyang, G. Li, L. Chen, M. Zhou, B. He, W. Xu, W. Wang, Z. Hou, Mater. Today Commun. 31, 103652 (2022)

    Article  CAS  Google Scholar 

  19. B. Wang, F. Yuan, J. Wang, Q. Wang, Z. Li, W. Zhao, W. Li, J. Electroanal. Chem. 864, 114102 (2020)

    Article  CAS  Google Scholar 

  20. J. Ouyang, J. Gong, L. Li, W. Wang, Q. Wang, J. Chen, L. Chen, Z. Hou, J. Electroanal. Chem. 920, 116628 (2022)

    Article  CAS  Google Scholar 

  21. J. Song, H. Kim, W. Jae, T. Kim, C.M. Futalan, J. Kim, Carbon 165, 55 (2020)

    Article  CAS  Google Scholar 

  22. H. Chen, B. Zhang, Y. Cao, X. Wang, Y. Yao, W. Yu, H. Tong, Ceram. Int. 44, 13706 (2018)

    Article  CAS  Google Scholar 

  23. B. Ding, Z. Cai, Z. Ahsan, Y. Ma, S. Zhang, G. Song, C. Yuan, W. Yang, C. Wen, Acta Metall. Sin. Engl. Lett. 34, 291 (2021)

    Article  CAS  Google Scholar 

  24. L. Chen, Z. Li, G. Li, M. Zhou, B. He, J. Ouyang, W. Xu, W. Wang, Z. Hou, J. Mater. Sci. Technol. 44, 229 (2020)

    Article  CAS  Google Scholar 

  25. W. Dang, W. Wang, Y. Yang, Y. Wang, J. Huang, X. Fang, L. Wu, Z. Rong, X. Chen, X. Li, L. Huang, X. Tang, Electrochim. Acta 313, 99 (2019)

    Article  CAS  Google Scholar 

  26. W. Dang, W. Wang, L. Xiao, Z. Ban, X. Tang, Y. Zhang, Electrochim. Acta 401, 139502 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 52171207, 52104301), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 21A0392 and 21B0406), the Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ40162), the Guangxi Key Laboratory of Low Carbon Energy Material (2020GXKLLCEM03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Zhaohui Hou.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3030 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Guan, M., Wang, Q. et al. In Situ Embedment of ZnS Nanocrystals in High Porosity Carbon Fibers as an Advanced Anode Material for Efficient Lithium Storage. Acta Metall. Sin. (Engl. Lett.) 36, 167–176 (2023). https://doi.org/10.1007/s40195-022-01481-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01481-9

Keywords

Navigation