Skip to main content
Log in

Effect of Extrusion Combination Types on Microstructure and Mechanical Properties of the AZ31/GW103K Bimetallic Composite Plates

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

A Correction to this article was published on 02 January 2023

This article has been updated

Abstract

The AZ31/GW103K bimetallic composite plates were prepared by co-extrusion of different combination types (sandwich extrusion type and double semicircle extrusion type), and effects of different extrusion combination types on the microstructure and mechanical properties of bimetallic composite plates were systematically investigated. The results show that both the AZ31/GW103K bimetallic composite plates prepared by different extrusion combination types have good metallurgical bonding, and changing the combination type does not affect the thickness of the interfacial transition layer of composite plates. Compared with the monolithic AZ31 and GW103K extruded plates, co-extrusion can promote the dynamic recrystallization (DRX) of AZ31 and GW103K components in composite plates, and double semicircular extrusion type has a better promotion effect on the DRX than sandwich extrusion type. In addition, the texture of AZ31 in both monolithic AZ31 and AZ31/GW103K/AZ31 (A/G/A) plates is a typical (0002) basal texture, while that in the AZ31/GW103K (A/G) composite plate shifts to the tangent direction (TD) of extruded plate. Compared with the monolithic AZ31 extruded plate, both the yield strength and tensile strength of A/G and A/G/A bimetallic composite plates are significantly improved. The strength of A/G/A composite plate is higher than that of A/G composite plate, but its elongation is worse. Meanwhile, co-extrusion reduces the dislocation density of AZ31 and GW103K components in composite plates, and different extrusion combination types also affect the dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. J. Cui, T. Luo, Y. Li, X. Feng, Q. Huang, Y. Yang, Fluidity. Acta Metall. Sin. -Engl. Lett. 34, 1265 (2021)

    Article  CAS  Google Scholar 

  2. Z. Yu, X. Xu, B. Du, K. Shi, K. Liu, S. Li, X. Han, T. Xiao, W. Du, Acta Metall. Sin. -Engl. Lett. 35, 596 (2021)

    Article  Google Scholar 

  3. M. Zha, H.M. Zhang, X.T. Meng, H.L. Jia, S.B. Jin, G. Sha, H.Y. Wang, Y.J. Li, H.J. Roven, J. Mater. Sci. Technol. 89, 141 (2021)

    Article  CAS  Google Scholar 

  4. Y.K. Li, M. Zha, J. Rong, H.L. Jia, Z.Z. Jin, H.M. Zhang, P.K. Ma, H. Xu, T.T. Feng, H.Y. Wang, J. Mater. Sci. Technol 88, 215 (2021)

    Article  Google Scholar 

  5. F. Tancret, E. Galindo-Nava, P.E.J.R. Díaz-del-Castillo, Mater. Des. 103, 293 (2016)

    Article  CAS  Google Scholar 

  6. L.W. Lu, X.Y. Liu, D.F. Shi, J. Zhao, Z.C. Wang, JOM 71, 1566 (2019)

    Article  CAS  Google Scholar 

  7. I.A. Maksoud, H. Ahmed, J. Rödel, Mater. Sci. Eng. A 504, 40 (2009)

    Article  Google Scholar 

  8. W. Xu, J. Yu, L. Jia, G. Wu, Z. Zhang, Mater. Charact. 178, 111215 (2021)

    Article  CAS  Google Scholar 

  9. W. Huang, J. Chen, R. Zhang, X. Yang, L. Jiang, Z. Xiao, Y. Liu, J. Alloy. Compd. 897, 163086 (2022)

    Article  CAS  Google Scholar 

  10. L. Zhu, Q. Li, X. Chen, Q. Zhang, J. Alloy. Compd. 865, 158648 (2021)

    Article  CAS  Google Scholar 

  11. Y. Chai, Y. Song, B. Jiang, J. Fu, Z. Jiang, Q. Yang, H. Sheng, G. Huang, D. Zhang, F. Pan, J. Magnes, Alloy 7, 545 (2019)

    CAS  Google Scholar 

  12. K. Sheng, L.W. Lu, Y. Xiang, M. Ma, Z.Q. Wu, J. Magnes, Alloy 7, 717 (2019)

    CAS  Google Scholar 

  13. B. Feng, Y. Xin, H. Yu, R. Hong, Q. Liu, Mater. Sci. Eng. A 675, 204 (2016)

    Article  CAS  Google Scholar 

  14. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52, 4589 (2004)

    Article  CAS  Google Scholar 

  15. S. Seipp, M.F.X. Wagner, K. Hockauf, I. Schneider, L.W. Meyer, M. Hockauf, Int. J. Plast. 35, 155 (2012)

    Article  CAS  Google Scholar 

  16. A. Yahiro, T. Masui, T. Yoshida, D. Doi, ISIJ Int. 31, 647 (2007)

    Article  Google Scholar 

  17. Y. Meng, J. Yu, G. Zhang, Y. Wu, Z. Zhang, Z. Shi, J. Magnes, Alloy 8, 1228 (2020)

    CAS  Google Scholar 

  18. Y. Xin, M. Wang, Z. Zeng, G. Huang, Q. Liu, Scr. Mater. 64, 986 (2011)

    Article  CAS  Google Scholar 

  19. J. Luo, W.W. Hu, Q.Q. Jin, H. Yan, R.S. Chen, Scr. Mater. 127, 146 (2017)

    Article  CAS  Google Scholar 

  20. X. Zheng, W. Du, K. Liu, Z. Wang, S. Li, J. Magnes, Alloy 4, 135 (2016)

    Google Scholar 

  21. Y. Wang, B. Yang, M. Gao, R. Guan, Mater. Sci. Eng. A 840, 142953 (2022)

    Article  CAS  Google Scholar 

  22. R.G. Li, H.R. Li, D.Y. Zhao, Y.Q. Dai, D.Q. Fang, J.H. Zhang, L. Zong, J. Sun, Mater. Sci. Eng. A 780, 139193 (2020)

    Article  CAS  Google Scholar 

  23. L. Wang, Z. Zhang, M. Cao, H. Zhang, T. Han, H. Wang, S. Arthanari, W. Cheng, J.L. Lyu, JOM 71, 1705 (2019)

    Article  CAS  Google Scholar 

  24. B. Feng, Z. Sun, Y. Wu, X. Feng, J. Wang, K. Zheng, J. Alloy. Compd. 842, 155676 (2020)

    Article  CAS  Google Scholar 

  25. M. Paramsothy, M. Gupta, N. Srikanth, J. Compos. Mater. 42, 2567 (2008)

    Article  CAS  Google Scholar 

  26. G. Li, J. Zhang, R. Wu, Y. Feng, S. Liu, X. Wang, Y. Jiao, Q. Yang, J. Meng, J. Mater. Sci. Technol. 34, 1076 (2018)

    Article  CAS  Google Scholar 

  27. S. Li, X. Yang, J. Hou, W. Du, J. Magnes, Alloy 8, 78 (2020)

    CAS  Google Scholar 

  28. C.J. Chen, Q.D. Wang, D.D. Yin, J. Alloy. Compd. 487, 560 (2009)

    Article  CAS  Google Scholar 

  29. H.X. Zhang, S.F. Chen, M. Cheng, C. Zheng, S.H. Zhang, Acta Metall. Sin. -Engl. Lett. 32, 1122 (2019)

    Article  CAS  Google Scholar 

  30. C. Zheng, S.F. Chen, R.X. Wang, S.H. Zhang, M. Cheng, Acta Metall. Sin.-Engl. Lett. 34, 248 (2020)

    Article  Google Scholar 

  31. Y. Meng, H. Zhang, B. Lin, L. Wang, J. Fan, L. Lu, X. Zhou, H. Huang, S. Zhang, H.J. Roven, Mater. Sci. Eng. A 833, 142578 (2022)

    Article  CAS  Google Scholar 

  32. P. Zhang, W.J. Ding, J. Lindemann, C. Leyens, Mater. Chem. Phys. 118, 453 (2009)

    Article  CAS  Google Scholar 

  33. W. Rong, J. Dong, L.K. Fan, P. Zhang, W.J. Ding, Trans. Nonferrous Met. Soc. China 18, s189 (2008)

    Article  Google Scholar 

  34. J.H. Zhang, K.B. Nie, K.K. Deng, X.Z. Han, Z.D. Wang, Mater. Sci. Eng. A 838, 142562 (2022)

    Article  CAS  Google Scholar 

  35. H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z.Q. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, J.F. Nie, Acta Mater. 149, 350 (2018)

    Article  CAS  Google Scholar 

  36. Y. Lin, Y. Zhang, B. Xiong, E.J. Lavernia, Mater. Lett. 82, 233 (2012)

    Article  CAS  Google Scholar 

  37. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010)

    Article  Google Scholar 

  38. Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Mater. Sci. Eng. A 723, 212 (2018)

    Article  CAS  Google Scholar 

  39. M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157, 53 (2018)

    Article  CAS  Google Scholar 

  40. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)

    Article  CAS  Google Scholar 

  41. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

  42. Z. Shan, J. Yang, J. Fan, H. Zhang, Q. Zhang, Y. Wu, H. Dong, Mater. Sci. Eng. A 780, 139195 (2020)

    Article  CAS  Google Scholar 

  43. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62, 141 (2014)

    Article  CAS  Google Scholar 

  44. P. Thirathipviwat, G. Song, J. Bednarcik, U. Kühn, T. Gemming, K. Nielsch, J. Han, Prog. Nat. Sci. 30, 545 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1810122, U1710118, 52174362 and 51975207), the Yantai High-End Talent Introduction "Double Hundred Plan" (2021), the Talent Training Program for Shandong Province Higher Educational Youth Innovative Teams (2019), the Key Research and Development Program of Shanxi Province (Nos. 201903D421076 and 201803D421086), the Innovative Talents of Higher Education Institutions of Shanxi (2018) and the Central Government Guided Local Science and Technology Development Projects (No. YDZJSX2021A010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

In the original publication, the affiliation citation number of the author Boyu Lin has been missed inadvertently in the author group. The affiliation should appear as Boyu Lin1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Lin, B., Wang, L. et al. Effect of Extrusion Combination Types on Microstructure and Mechanical Properties of the AZ31/GW103K Bimetallic Composite Plates. Acta Metall. Sin. (Engl. Lett.) 35, 1959–1972 (2022). https://doi.org/10.1007/s40195-022-01438-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01438-y

Keywords

Navigation