Skip to main content
Log in

Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, the microstructural evolution, micro-crack formation, and mechanical anisotropy of the selective laser melted (SLM) carbon-free Mar-M509 Co-based superalloy were systematically studied under different linear energy densities (LED). Observation shows that the SLM Mar-M509 superalloy possesses a fully dense structure, whereas some micro-cracks exist along the building direction. The electron backscatter diffraction results reveal that dominant columnar grains tend to elongate along the building direction parallel to the XZ plane. Meanwhile, both a < 001 > near fiber texture and a {100} < 001 > near sheet texture are observed in different specimens. For the specimen with fiber texture, a high misorientation angle exists among different columnar grains, which aggravated the generation of micro-cracks under thermal stress. Higher LED results in higher micro-crack density in the SLM specimen due to higher thermal stress. Mar-M509 specimen fabricated under lower LED exhibits higher tensile strength due to more significant grain refinement. More prominent anisotropy of tensile performance was found in the high LED specimen, which can be attributed to the higher density of micro-cracks and crystallographic texture. Furthermore, the SLM Mar-M509 superalloy exhibits better mechanical properties than the traditional cast technique. In summary, this work can contribute to the development and the future application of SLM-fabricated Co-based superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Domashenkov, A. Plotnikova, I. Movchan, P. Bertrand, N. Peillon, B. Desplanques, S. Saunier, C. Desrayaud, Addit. Manuf. 15, 66 (2017)

    CAS  Google Scholar 

  2. W. Huang, H. Yu, J. Yin, Z. Wang, X. Zeng, Acta Metall. Sin. -Engl. Lett. 52, 1089 (2016)

    CAS  Google Scholar 

  3. M. Yan, S. Zhang, H. Wang, Acta Metall. Sin. -Engl. Lett. 43, 472 (2007)

    CAS  Google Scholar 

  4. M. Cartón-Cordero, M. Campos, L.P. Freund, M. Kolb, S. Neumeier, M. Göken, J.M. Torralba, Mater. Sci. Eng. A 734, 437 (2018)

    Article  Google Scholar 

  5. N.C. Ferreri, S. Ghorbanpour, S. Bhowmik, R. Lussier, J. Bicknell, B.M. Patterson, M. Knezevic, Int. J. Plast. 121, 116 (2019)

    Article  CAS  Google Scholar 

  6. X.A. Hu, G.L. Zhao, Y. Jiang, X.F. Ma, F.C. Liu, J. Huang, C.L. Dong, Acta Metall. Sin. -Engl. Lett. 33, 514 (2020)

    Article  CAS  Google Scholar 

  7. H. Kovacı, Surf. Coat. Technol. 374, 987 (2019)

    Article  Google Scholar 

  8. M. Cloots, K. Kunze, P.J. Uggowitzer, K. Wegener, Mater. Sci. Eng. A 658, 68 (2016)

    Article  CAS  Google Scholar 

  9. X. Yan, S. Gao, C. Chang, J. Huang, M. Liu, J. Mater. Process. Technol. 288, 116878 (2020)

    Article  Google Scholar 

  10. K.S. Kim, J.W. Hwang, K.A. Lee, J. Alloys Compd. 834, 155055 (2020)

    Article  CAS  Google Scholar 

  11. E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin, Acta Mater. 142, 82 (2018)

    Article  CAS  Google Scholar 

  12. W. Liu, C. Chen, S. Shuai, R. Zhao, Z. Ren, Mater. Sci. Eng. A 797, 139981 (2020)

    Article  CAS  Google Scholar 

  13. H. Ali, H. Ghadbeigi, K. Mumtaz, J. Mater. Eng. Perform. 27, 4059 (2018)

    Article  CAS  Google Scholar 

  14. D. Wang, Y.Q. Yang, X.B. Su, Y.H. Chen, Int. J. Adv. Des. Manuf. Technol. 58, 1189 (2012)

    Article  Google Scholar 

  15. Y. Chen, F.G. Lu, K. Zhang, P.L. Nie, S.R. Hosseini, K. Feng, Z.G. Li, J. Alloys Compd. 670, 312 (2016)

    Article  CAS  Google Scholar 

  16. N. Wang, S. Mokadem, M. Rappaz, W. Kurz, Acta Mater. 52, 3173 (2004)

    Article  CAS  Google Scholar 

  17. M. Zhong, H. Sun, W. Liu, X. Zhu, J. He, Scr. Mater. 53, 159 (2005)

    Article  CAS  Google Scholar 

  18. S. Kurosu, H. Matsumoto, A. Chiba, Metall. Mater. Trans. A 41, 2613 (2010)

    Article  Google Scholar 

  19. F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenom. 160, 63 (2010)

    Article  CAS  Google Scholar 

  20. F.M. Shang, S.Y. Chen, M.W. Wei, J. Liang, C.S. Liu, Mater. Res. Express. 6, 26566 (2018)

    Article  Google Scholar 

  21. E. Vacchieri, A. Costa, G. Roncallo, G. Cacciamani, Mater. Sci. Technol. 1, 1100 (2017)

  22. W. Jia, S. Chen, M. Wei, J. Liang, C. Liu, J. Li, Powder Metall. 62, 30 (2019)

    Article  CAS  Google Scholar 

  23. J.R. Davis (ed.), Nickel, Cobalt, and Their Alloy (Materials Park, Ohio, 2000)

    Google Scholar 

  24. K. Rajan, J.B. Vander Sande, J. Mater. Sci. 17, 769 (1982)

    Article  CAS  Google Scholar 

  25. Z. Wang, X. Lin, N. Kang, Y. Hu, J. Chen, W. Huang, Addit. Manuf. 34, 101260 (2020)

    CAS  Google Scholar 

  26. J.C. Zhao, M.R. Notis, Scr. Metall. Mater. 32, 1671 (1995)

    Article  CAS  Google Scholar 

  27. S. Wen, A. Dong, Y. Lu, G. Zhu, D. Shu, B. Sun, Acta Metall. Sin. -Engl. Lett. 54, 393 (2018)

    CAS  Google Scholar 

  28. W.F. Smith, Structure and Properties of Engineering Alloys, 2nd. (McGraw-Hill, New York, 1993), pp. 14

  29. E.O. Hall, Proc. Phys. Soc. Sect. B 64, 47 (1951)

    Google Scholar 

  30. J. Liu, Q. Peng, J. Xie, Acta Metall. Sin. -Engl. Lett. 57, 191 (2021)

    CAS  Google Scholar 

  31. T. Maitland, S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, 14th (Springer, Berlin, 2007), p. 522

    Google Scholar 

  32. Q.L. Yuan, X.D. Feng, J.J. Cao, Z.J. Su, J. Henan Poly. Univ. (Nat. Sci.) 29, 245 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFA0705300), the Chinese National Science and Technology Major Project “Aeroengine and Gas Turbine” (No. 2017-VII-0008-0102), the Shanghai Science and Technology Committee (No. 19DZ1100704), Shanghai Shuguang Program (No. 20SG42), Shanghai Sailing Program (No. 19YF1415900), the National Natural Science Foundation of China (No. 52001191), the Shanghai Rising-Star Program (No. 20QA1403800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoyue Chen or Jiang Wang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, C., Zhao, R. et al. Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy. Acta Metall. Sin. (Engl. Lett.) 35, 501–516 (2022). https://doi.org/10.1007/s40195-021-01348-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01348-5

Keywords

Navigation