Skip to main content
Log in

Effect of Carbon Migration on Interface Fatigue Crack Growth Behavior in 9Cr/CrMoV Dissimilar Welded Joint

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Fatigue crack growth (FCG) behavior of 9Cr/CrMoV dissimilar welded joint at elevated temperature and different stress ratios was investigated. Attention was paid to the region near the fusion line of 9Cr where carbon-enriched zone (CEZ) and carbon-depleted zone (CDZ) formed due to carbon migration during the welding process. Hard and brittle tempered martensite dominated the stress ratio-insensitive FCG behavior in the coarse grain zone (CGZ) of 9Cr-HAZ. For crack near the CGZ–CEZ interface, crack deflection through the CEZ and into the CDZ was observed, accompanied by an accelerating FCG rate. Compared with the severe plastic deformation near the secondary crack in 9Cr-CGZ, the electron back-scattered diffraction analysis showed less deformation and lower resistance in the direction toward the brittle CEZ, which resulted in the transverse deflection. In spite of the plastic feature in CDZ revealed by fracture morphology, the less carbides due to carbon migration led to lower strength and weaker FCG resistance property in this region. In conclusion, the plasticity deterioration in CEZ and strength loss in CDZ accounted for the FCG path deflection and FCG rate acceleration, respectively, which aggravated the worst FCG resistance property of 9Cr-HAZ in the dissimilar welded joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.J. Wu, H.J. Hou, Y.P. Yang, E. Hu, Appl. Energy 157, 123 (2015)

    Article  Google Scholar 

  2. A. Rusin, G. Nowak, W. Piecha, Eng. Failure Anal. 34, 217 (2013)

    Article  Google Scholar 

  3. S. Guan, C.Y. Cui, Acta Metall. Sin. Engl. Lett. 28, 1083 (2015)

    Article  CAS  Google Scholar 

  4. A. Aghajani, C. Somsen, G. Eggeler, Acta Mater. 57, 5093 (2009)

    Article  CAS  Google Scholar 

  5. O. Prat, J. Garcia, D. Rojas, G. Sauthoff, G. Inden, Intermetallics 32, 362 (2013)

    Article  CAS  Google Scholar 

  6. X.P. Mao, H. Xu, G. Wang, Z.Y. Ma, Adv. Mater. Res. 33–37, 521 (2008)

    Article  Google Scholar 

  7. W. Kosman, M. Roskosz, K. Nawrat, Appl. Therm. Eng. 29, 3386 (2009)

    Article  CAS  Google Scholar 

  8. Y.Y. You, R.K. Shiue, R.H. Shiue, C. Chen, J. Mater. Sci. Lett. 20, 1429 (2001)

    Article  CAS  Google Scholar 

  9. T. Helander, J. Agren, J.O. Nilsson, ISIJ Int. 37, 1139 (1997)

    Article  CAS  Google Scholar 

  10. R.S. Vidyarthy, A. Kulkarni, D.K. Dwivedi, Mater. Sci. Eng. A 695, 249 (2017)

    Article  CAS  Google Scholar 

  11. S.G. Nayee, V.J. Badheka, J. Manuf. Process. 16, 137 (2014)

    Article  Google Scholar 

  12. R. Anand, C. Sudha, T. Karthikeyan, A.L.E. Terrance, S. Saroja, M. Vijayalakshmi, J. Mater. Sci. 44, 257 (2009)

    Article  CAS  Google Scholar 

  13. S. Wang, Q. Ma, Y. Li, Mater. Des. 32, 831 (2011)

    Article  CAS  Google Scholar 

  14. Y. Li, K. Li, Z. Cai, J. Pan, X. Liu, P. Wang, Weld. World 62, 1137 (2018)

    Article  CAS  Google Scholar 

  15. A. Kulkarni, D.K. Dwivedi, M. Vasudevan, Mater. Sci. Eng. A 731, 309 (2018)

    Article  CAS  Google Scholar 

  16. K. Laha, S. Latha, K.B. Sankara Rao, S.L. Mannan, D.H. Sastry, Mater Sci. Technol. 17, 1265 (2013)

    Article  Google Scholar 

  17. K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, D.H. Sastry, Metall. Mater. Trans. A 32, 115 (2001)

    Article  Google Scholar 

  18. M.L. Huang, L. Wang, Metall. Mater. Trans. A 29, 3037 (1998)

    Article  Google Scholar 

  19. M.L. Zhu, F.Z. Xuan, S.T. Tu, Int. J. Pressure Vessels Piping 110, 9 (2013)

    Article  CAS  Google Scholar 

  20. Y.C. Su, X.M. Hua, Y.X. Wu, J. Mater. Process. Technol. 214, 750 (2014)

    Article  CAS  Google Scholar 

  21. Q.J. Wu, F.G. Lu, H.C. Cui, X. Liu, P. Wang, Y.L. Gao, Mater. Lett. 141, 242 (2015)

    Article  CAS  Google Scholar 

  22. P. Mayr, C. Schlacher, J.A. Siefert, J.D. Parker, Int. Mater. Rev. 64, 1 (2018)

    Article  Google Scholar 

  23. R. Paventhan, P.R. Lakshminarayanan, V. Balasubramanian, Mater. Des. 32, 1888 (2011)

    Article  CAS  Google Scholar 

  24. N. Arivazhagan, S. Singh, S. Prakash, G.M. Reddy, Int. J. Adv. Manuf. Technol. 39, 679 (2007)

    Article  Google Scholar 

  25. L. Milović, T. Vuherer, M. Zrilić, A. Sedmak, S. Putić, Mater. Manuf. Processes 23, 597 (2008)

    Article  Google Scholar 

  26. C.D. Lundin, K.K. Khan, D. Yang, Weld. Res. Counc. Bull. 407, 1 (1995)

    Google Scholar 

  27. X. Liu, Z.P. Cai, X.L. Deng, F.G. Lu, J. Mater. Res. 32, 3117 (2017)

    Article  CAS  Google Scholar 

  28. V. Chaswal, G. Sasikala, S.K. Ray, S.L. Mannan, B. Raj, Mater. Sci. Eng. A 395, 251 (2005)

    Article  Google Scholar 

  29. S. Kwofie, Int. J. Fatigue 26, 299 (2004)

    Article  Google Scholar 

  30. M.L. Zhu, F.Z. Xuan, Mater. Sci. Eng. A 527, 4035 (2010)

    Article  Google Scholar 

  31. S. Mannan, K. Laha, Trans. Indian Inst. Met. 49, 303 (1996)

    CAS  Google Scholar 

  32. K. Ding, H.J. Ji, X. Liu, P. Wang, Q.L. Zhang, X.H. Li, Y.L. Gao, J. Iron Steel Res. Int. 25, 847 (2018)

    Article  Google Scholar 

  33. K. Ding, X.H. Li, B.G. Zhao, P. Wang, Y.M. Ding, F.G. Lu, Y.L. Gao, J. Mater. Res. Technol. 9, 6048 (2020)

    Article  CAS  Google Scholar 

  34. J.G. Chen, Y.C. Liu, Y.T. Xiao, Y.H. Liu, C.X. Liu, H.J. Li, Acta Metall. Sin. Engl. Lett. 31, 706 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 52001200) and the experimental support by Instrumental Analysis Center of SJTU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chendong Shao or Fenggui Lu.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Shao, C., Cui, H. et al. Effect of Carbon Migration on Interface Fatigue Crack Growth Behavior in 9Cr/CrMoV Dissimilar Welded Joint. Acta Metall. Sin. (Engl. Lett.) 35, 714–726 (2022). https://doi.org/10.1007/s40195-021-01322-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01322-1

Keywords

Navigation