Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of TiC-Reinforced Al–Mg–Sc–Zr Composites Additively Manufactured by Laser Direct Energy Deposition

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In order to refine the microstructure and improve the performance of direct energy deposited (DED) additively manufactured Al–Mg–Sc–Zr alloy, TiC-modified Al–Mg–Sc–Zr composites were prepared by DED and the effect of TiC content on the microstructure and performance was studied. In the absence of TiC particle, the microstructure of Al–Mg–Sc–Zr alloy prepared by DED consisted of fine grains with average size of 8.36 μm, and well-dispersed nano-Al3(Sc,Zr) particles inside the grains and Mg2Si phase along the grain boundaries. With the addition of 1 wt% TiC, the microstructure of TiC/Al–Mg–Sc–Zr prepared by DED became finer apparently compared with that without TiC; while the further increase of TiC content to 3 wt%, the microstructure of TiC/Al–Mg–Sc–Zr prepared by DED became coarser with appearance of a new kind of needle-like (Ti,Zr)5Si3 phase. Also, the addition of TiC decreased the porosity of Al–Mg–Sc–Zr prepared by DED. Simultaneously, after the addition of TiC, the tensile strength increased from 283.25 MPa to 344.98–361.51 MPa, and the elongation increased from 3.61% to 9.58–14.10%. The potential mechanism of the microstructure evolution and strength improvement was discussed. This research will provide new insights into the available metal matrix composites by laser additive manufacturing (LAM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Kürnsteiner, P. Bajaj, A. Gupta, M.B. Wilms, A. Weisheit, X. Li, C. Leinenbach, B. Gault, E.A. Jägle, D. Raabe, Addit. Manuf. 32, 100910 (2020)

    Google Scholar 

  2. D. Svetlizky, B. Zheng, T. Buta, Y. Zhou, O. Golan, U. Breiman, R. Haj-Ali, J.M. Schoenung, E.J. Lavernia, N. Eliaz, Mater. Des. 192, 108763 (2020)

    Article  CAS  Google Scholar 

  3. J.R. Croteau, S. Griffiths, M.D. Rossell, C. Leinenbach, C. Kenel, V. Jansen, D.N. Seidman, D.C. Dunand, N.Q. Vo, Acta Mater. 153, 35 (2018)

    Article  CAS  Google Scholar 

  4. S. Jiao, X. Cheng, S. Shen, X. Wang, B. He, D. Liu, H. Wang, J. Alloys Compd. 821, 153125 (2020)

    Article  CAS  Google Scholar 

  5. P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, D. Raabe, Acta Mater. 129, 52 (2017)

    Article  Google Scholar 

  6. Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, X. Wu, Acta Mater. 171, 108 (2019)

    Article  CAS  Google Scholar 

  7. K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Phys. Procedia 12, 369 (2011)

    Article  CAS  Google Scholar 

  8. N. Kang, P. Coddet, L. Dembinski, H. Liao, C. Coddet, J. Alloys Compd. 691, 316 (2017)

    Article  CAS  Google Scholar 

  9. J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol. 35, 270 (2019)

    Article  Google Scholar 

  10. R. Li, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, P. Cao, Powder Technol. 319, 117 (2017)

    Article  CAS  Google Scholar 

  11. J. Gu, M. Gao, S. Yang, J. Bai, J. Ding, X. Fang, Addit. Manuf. 30, 100900 (2019)

    CAS  Google Scholar 

  12. S.Z. Uddin, L.E. Murr, C.A. Terrazas, P. Morton, D.A. Roberson, R.B. Wicker, Addit. Manuf. 22, 405 (2018)

    CAS  Google Scholar 

  13. A.B. Spierings, K. Dawson, M. Voegtlin, F. Palm, P.J. Uggowitzer, Cirp Ann. Manuf. Technol. 65, 213 (2016)

    Article  Google Scholar 

  14. A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schaublin, F. Palm, K. Wegener, Mater. Des. 115, 52 (2017)

    Article  CAS  Google Scholar 

  15. A.B. Spierings, K. Dawson, K. Kern, F. Palm, K. Wegener, Mater. Sci. Eng. A 701, 264 (2017)

    Article  CAS  Google Scholar 

  16. R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Acta Mater. 193, 83 (2020)

    Article  CAS  Google Scholar 

  17. Z. Wang, X. Lin, Y. Tang, N. Kang, X. Gao, S. Shi, W. Huang, J. Mater. Sci. Technol. 69, 168 (2021)

    Article  Google Scholar 

  18. Z. Wang, X. Lin, N. Kang, Y. Hu, J. Chen, W. Huang, Addit. Manuf. 34, 101260 (2020)

    CAS  Google Scholar 

  19. L.J. Zhang, F. Qiu, J.G. Wang, Q.C. Jiang, Mater. Sci. Eng. A 626, 338 (2015)

    Article  CAS  Google Scholar 

  20. W.S. Tian, Q.L. Zhao, Q.Q. Zhang, F. Qiu, Q.C. Jiang, Mater. Sci. Eng. A 700, 42 (2017)

    Article  CAS  Google Scholar 

  21. M. Reddy, V. Manakari, G. Parande, F. Ubaid, R.A. Shakoor, J. Alloys Compd. 762, 398 (2018)

    Article  Google Scholar 

  22. Y. Liu, F. Wang, Y. Cao, J. Nie, H. Zhou, H. Yang, X. Liu, X. An, X. Liao, Y. Zhao, Scr. Mater. 162, 316 (2019)

    Article  CAS  Google Scholar 

  23. H. Yang, K. Zhao, J. Nie, X. Liu, Mater. Sci. Eng. A 774, 138926 (2020)

    Article  CAS  Google Scholar 

  24. Q. Zhao, H. Zhang, X. Zhang, F. Qiu, Q. Jiang, Mater. Sci. Eng. A 718, 305 (2018)

    Article  CAS  Google Scholar 

  25. X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Acta Mater. 129, 183 (2017)

    Article  CAS  Google Scholar 

  26. X. Xin, B. Chen, C.W. Tan, X.G. Song, J.C. Feng, J. Manuf. Process. 58, 763 (2020)

    Article  Google Scholar 

  27. S. Abdi, M.S. Khoshkhoo, O. Shuleshova, M.B. Nisch, M. Calin, L. Schultz, J. Eckert, M.D. Baró, J. Sort, A. Gebert, Intermetallics 46, 156 (2014)

    Article  CAS  Google Scholar 

  28. M.X. Zhang, P.M. Kelly, M.A. Easton, Acta Mater. 53, 1427 (2005)

    Article  CAS  Google Scholar 

  29. D. Zhemchuzhnikova, M. Lebyodkin, T. Lebedkina, R. Kaibyshev, Mater. Sci. Forum 879, 2268 (2016)

    Article  Google Scholar 

  30. H. Jin, D.J. Lloyd, Scr. Mater. 50, 1319 (2004)

    Article  CAS  Google Scholar 

  31. Z. Lei, J. Bi, Y. Chen, X. Chen, Z. Tian, X. Qin, J. Manuf. Process. 53, 283 (2020)

    Article  Google Scholar 

  32. J. Bi, Z.L. Lei, X. Chen, P. Li, N.N. Lu, Y.B. Chen, Ceram. Int. 45, 5680 (2019)

    Article  Google Scholar 

  33. T. Zhao, M. Dahmen, W. Cai, M. Alkhayat, J. Schaible, P. Albus, C. Zhong, C. Hong, T. Biermann, H. Zhang, D. Gu, A. Weisheit, A. Gasser, J.H. Schleifenbaum, Opt. Laser Technol. 131, 106438 (2020)

    Article  CAS  Google Scholar 

  34. H.T. Li, Y. Wang, Z. Fan, Acta Mater. 60, 1528 (2012)

    Article  CAS  Google Scholar 

  35. M. Li, S. Zhou, W. Wang, F. Liu, Y. Wu, Prakt. Metallogr.-Pract. Metallogr. 57, 321 (2020)

    Article  Google Scholar 

  36. B.C. Zhang, G.J. Bi, S.R. Nai, C.N. Sun, J. Wei, Opt. Laser Technol. 80, 186 (2016)

    Article  CAS  Google Scholar 

  37. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1–4, 77 (2014)

    Google Scholar 

  38. A. Haboudou, P. Peyre, A.B. Vannes, G. Peix, Mater. Sci. Eng. A 363, 40 (2003)

    Article  Google Scholar 

  39. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, R. Poprawe, J. Mater. Process. Technol. 221, 112 (2015)

    Article  CAS  Google Scholar 

  40. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12, 344 (2013)

    Article  CAS  Google Scholar 

  41. L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X.C. Li, Nature 528, 539 (2015)

    Article  CAS  Google Scholar 

  42. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010)

    Article  Google Scholar 

  43. Z.F. Yan, D.H. Wang, X.L. He, W.X. Wang, H.X. Zhang, Mater. Sci. Eng. A 723, 212 (2018)

    Article  CAS  Google Scholar 

  44. Z. Sun, X.P. Tan, M. Descoins, D. Mangelinck, S.B. Tor, C.S. Lim, Scr. Mater. 168, 129 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51871249), the Science Foundation of Shangdong Province (ZR2020ZD04), the Science and Technology Plan Project of Shenzhen (JCYJ20180508151903646), the Hunan distinguished author (2020JJ2046), the Hunan key R&D Plan (2020WK2027), the Large-scale Instruments and Equipments of Central South University (CSUZC202110), and the Science and Technology Planning Project of Guangxi (Guike AB 19050002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruidi Li.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Li, R., Yuan, T. et al. Microstructure and Mechanical Properties of TiC-Reinforced Al–Mg–Sc–Zr Composites Additively Manufactured by Laser Direct Energy Deposition. Acta Metall. Sin. (Engl. Lett.) 35, 411–424 (2022). https://doi.org/10.1007/s40195-021-01309-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01309-y

Keywords

Navigation